Aspects of Higher Spin Symmetries in Various Dimensions

जैe on
Karan Govil
Penm State University

October 29, 2014, ETH, Ztirich
ar Xu: 1312.2907, 1401. 6930 with Murat Ginaydin In progress with Murat Gïnaydin, Evgeny Skrortsor \&' Massimo Taromna

Overture

Motivations

* Why study higher spin symmetries?

Maximal symmetry

HS symmetries can not result from breaking of higher symmetries
\Downarrow
Manifest at any scale including Planck scale and above $\Rightarrow \mathrm{HS}$ gauge theory captures quantum gravity effects
[Fradkin-Vasiliev]
Gravity is sourced by HS fields \& vice versa \Rightarrow Einstein gravity cannot be obtained as a truncation \& Riemannian geometry is not an appropriate tool

One loop calculations of free energy show that HS theories are one-loop UV finite theories of quantum gravity [Giombi-Klebanov ${ }^{13}$, Giombi-Klebanov-Safdi ${ }^{1} 14$]

Stringy motivations

There are large N free CFTs with conserved HS currents in $\mathrm{d}=4$ (e.g. $\mathrm{N}=4$ SYM in the zero 't Hooft coupling limit)

AdS/CFT

Tensionless limit of type IIB string theory in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ must reduce to a HS gauge theory (coupled to infinite tower of massless fields).
[Ferrara-Fronsdal '98,Haagi-Mani-Sundborg '00, Konstein-Vasiliev-Zaikin '00, Witten '01, Beisert-Bianchi-Morales-Samtleben '04, Sagnotti '11, Jevicki et al, Douglas et al]

Symmetry \Rightarrow Solvability

∞ dimensional conformal (Virasoro) symmetry in two dimensions gives a host of exactly solvable models [Belavin-Polyakov-Zamolodchikov '84]

Conformal symmetry finite dimensional in $\mathrm{d}>2$, so we need more symmetries $\rightarrow \infty$ HS symmetries!

However, exact conformal HS symmetry is too restrictive \& gives free field theories but approximate HS symmetry gives non-trivial interacting CFTs [Maldacena-Zhiboedov '11]

Motivations

* Why study higher spin symmetries?
* Higher spin holography.

HS/Vector model holography

HS/Vector model duality $\left(\mathrm{AdS}_{4} / \mathrm{CFT}_{3}\right)$ conjectures [Klebanov-Polyakov, Sezgin-Sundell, Leigh-Petkou '02, Giombi-Yin '09,'10]
AdS_{4} HS theories are dual to free or critical $\mathrm{O}(\mathrm{N})$ boson/ fermion vector model depending on boundary conditions

Generic boundary conditions (parity violating) break some HS symmetry and correspond to non-linear boundary conformal theories where HS currents interact with HS gauge fields and acquire anomalous dimensions [Vasiliev '12]

Vasiliev fields as string bits

Vasiliev theory with U(M) Chan-Paton factors \& $\mathscr{H}=6$ b.c.

Finite M
$\theta_{0}=\pi \lambda / 2$

$\mathrm{U}(\mathrm{N})_{\mathrm{k}} \times \mathrm{U}(\mathrm{M})_{-\mathrm{k}}$ ABJ theory

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ Story - Minimal model Holography

[Gaberdiel-Gopakumar '11]: The role of vector models in 2 d is played by $\mathrm{W}_{\mathrm{N}, \mathrm{k}}$ minimal models.

Conjecture: Holographic duals are AdS_{3} Vasiliev higher spin theory (tower of ∞ HS fields coupled to massive scalars).

Vasiliev higher spin symmetry organizes all the states of the $\left(\mathrm{T}^{4}\right)^{\mathrm{N}+1} / \mathrm{S}_{\mathrm{N}+1}$ orbifold symmetric product CFT $=$ Tensionless limit of strings on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$
[Gopakumar Strings '14, Gaberdiel-Gopakumar '14]

Motivations

* Why study higher spin symmetries?
* Higher spin holography.
* Extension to $\mathrm{d}=4$ and $\mathrm{d}=6$?

Problems

Conformal HS algebras in $\mathrm{d}=3$ are conveniently described in terms of Lorentz covariant twistorial oscillators due to $\mathrm{SO}(3,2) \approx \mathrm{Sp}(4, \mathrm{R})$

Extension to $d=4$ and 6 is not straightforward as the algebras described by Lorentz covariant twistorial oscillators are

$$
\begin{array}{ll}
d=4: & \mathrm{Sp}(8, \mathrm{R}) \supset \mathrm{SU}(2,2) \approx \mathrm{SO}(4,2) \\
\mathrm{d}=6: & \mathrm{Sp}(16, \mathrm{R}) \supset \mathrm{SO}(8) \approx \mathrm{SO}(6,2)
\end{array}
$$

Punchline

The conformal HS algebras in 4 and 6 dimensions are naturally formulated in terms of nonlinear twistors which transform nonlinearly under the respective Lorentz groups.

These algebras admit one parameter continuous (4d) and discrete (6d) deformations which describe mixed symmetry HS algebras.

Straightforward supersymmetric extensions.

Prelude

HS algebras and singleton/doubleton representations

 Conformal group in $\mathrm{d}>2$
 $\mathrm{AdS}_{\mathrm{d}+1}$ symmetry group

Positive energy unitary representations or lowest weight representations

Modules labeled by compact subgroup $\mathrm{SO}(\mathrm{d}) \mathrm{xSO}(2)$

Unitarity $=$ Hilbert space with positive definite

Various "short" and "semi-short" representations

Notion of masslessness is tricky to define in AdS
Gauge degrees of freedom or reduced d.o.f.

$\mathrm{SO}(4,2)$

Positive energy UIR's classified [Mack 77$]$

	Labels	4d Poincare content	AdS $_{5}$ content
Short/singleton/ doubleton (protected)	$j_{1} j_{2}=0$, $\Delta=j_{1}+j_{2}+1$	$m=0$ helicity $=j_{1}-j_{2}$	No Poincare limit, live on the boundary [Günaydin-Marcus '84]
Semi-short	$j_{1} \neq 0, j_{2} \neq 0$ $\Delta=j_{1}+\mathrm{j}_{2}+2$	$\mathrm{m}>0$ spin $=\mathrm{j}_{1}+\mathrm{j}_{2}$	Massless symmetric + mixed
Chiral semi-short	$\mathrm{j}_{1} \mathrm{j}_{2}=0$, $\Delta>\mathrm{j}_{1}+\mathrm{j}_{2}+1$	$\mathrm{m}>0$ spin $=\mathrm{j}_{1}+\mathrm{j}_{2}$	Chiral massless
Long	$\mathrm{j}_{1} \neq 0, \mathrm{j}_{2} \neq 0$ $\Delta>\mathrm{j}_{1}+\mathrm{j}_{2}+2$	$\mathrm{m}>0, \mathrm{~s}=\mathrm{j}_{1}-$ $\mathrm{j}_{2} \mid, \ldots, \mathrm{j}_{1}+\mathrm{j}_{2}$	Massive

Oscillator methods for $\mathrm{SO}(4,2) \approx \mathrm{SU}(2,2)$

[Günaydin-Marcus, Günaydin-Nieuwenhuizen-Warner '85, Günaydin-Minic-Zagermann '98,...]

$$
\begin{gathered}
{\left[\mathrm{a}_{\mathrm{i}}(\xi), \mathrm{a}^{\mathrm{j}}(\eta)\right]=\delta_{\mathrm{i}}^{\mathrm{j}} \delta_{\xi, \eta},\left[\mathrm{b}_{\mathrm{r}}(\xi), \mathrm{b}^{\mathrm{s}}(\eta)\right]=\delta_{\mathrm{r}}^{\mathrm{s}} \delta_{\xi, \eta}} \\
\mathrm{i}, \mathrm{j}=1,2 \quad \mathrm{r}, \mathrm{~s}=1,2 \quad \xi, \eta=1,2, \ldots, \mathrm{P}
\end{gathered}
$$

generations of oscillators

$$
\begin{aligned}
& \text { Lowering operators } \mathrm{L}_{\mathrm{ir}}=\mathrm{a}_{\mathrm{i}} \cdot \mathrm{~b}_{\mathrm{r}} \\
& \text { Raising operators } \mathrm{L}^{\mathrm{ir}}=\mathrm{a}^{\mathrm{i}} \cdot \mathrm{~b}^{\mathrm{r}}
\end{aligned}
$$

Maximal compact subgroup K of $\mathrm{SU}(2,2)=\mathrm{SU}(2)_{\mathrm{L}} \times \operatorname{SU}(2)_{\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{E}}$

$$
\begin{gathered}
\mathrm{SU}(2)_{\mathrm{L}} \\
\mathrm{SU}(2)_{\mathrm{R}} \\
\text { AdS energy }
\end{gathered}
$$

$$
\begin{aligned}
& L_{i}{ }^{j}=a^{j} \cdot a_{i}-1 / 2 \delta_{i}{ }^{j} a^{k} \cdot a_{k} \\
& \mathrm{R}_{\mathrm{i}}{ }^{\mathrm{j}}=\mathrm{b}^{\mathrm{j}} \cdot \mathrm{~b}_{\mathrm{i}}-1 / 2 \delta_{\mathrm{i}}^{\mathrm{j}} \mathrm{~b}^{\mathrm{k}} \cdot \mathrm{~b}_{\mathrm{k}} \\
& E=1 / 2\left(a_{i} \cdot a^{i}+b^{r} . b_{r}\right)
\end{aligned}
$$

Oscillator methods

[Günaydin-Marcus, Günaydin-Warner '85, Günaydin-Minic-Zagermann '98,...]

$P=1$	Short/Singleton/ Doubleton	$D\left(j_{1}+1, j_{1}, 0\right) \oplus$ $D\left(j_{2}+1,0, j_{2}\right)$
$P=2$	Semi-short	$D\left(j_{1}+j_{2}+2, j_{1}, j_{2}\right)$
$P=2$	Chiral semi-short	$D\left(j_{1}+2+n, j_{1}, 0\right) \oplus$ $D\left(j_{2}+2+n, 0, j_{2}\right)$
$P>2$	Massive	$D\left(E, j_{1}, j_{2}\right)$

Similar results for $\mathrm{SO}(6,2)$

Why do we care about short representations?

Eastwood-Vasiliev HS algebras

[Eastwood '02]

$$
\mathrm{hs}(\mathrm{~d}, 2)=\mathscr{U}(\mathrm{so}(\mathrm{~d}, 2)) / \mathscr{A}(\mathrm{so}(\mathrm{~d}, 2))
$$

Universal enveloping algebra

Annihilator of scalar singleton/
doubleton (Joseph ideal)

$$
\mathrm{hs}(\mathrm{~d}, 2)=\mathscr{U}\left(\mathrm{so}(\mathrm{~d}, 2)_{\text {scalar singleton/doubleton module }}\right)
$$

Minimal unitary irreducible representation (minrep)

Minrep: A unitary realization of a semi-simple Lie algebra on a Hilbert space of functions with minimal number of variables possible. [Joseph '74]

For $\mathrm{SO}(\mathrm{d}, 2)$ the scalar singleton/doubleton module is the minrep

$$
\begin{gathered}
d=3[\text { Dirac '63, Flato-Fronsdal '78] } \\
d=4,6[\text { Günaydin-Fernando '09-'10] }
\end{gathered}
$$

Oscillator representation (one pair) for $\mathrm{SO}(3,2)$ directly yields the scalar singleton or the minrep

$$
\text { Enveloping algebra } \quad \text { [Vasiliev..., Günaydin '89] }
$$

AdS4 Higher spin (scalar/spinor) algebra hs(3,2)
Oscillator representation (two pairs) for $\mathrm{SO}(4,2)$ and $\mathrm{SO}(6,2)$ decomposes into infinite irreps (doubletons) including minrep
[Günaydin-Marcus, Günaydin-Nieuwenhuizen-Warner '85] Non-trivial constraints \downarrow [Sezgin-Sundell '01, Vasiliev '05]
AdS $_{5 / 7}$ Higher spin (scalar/spinor) algebra hs(4,2), hs(6,2)

Generalized spacetimes \& Quasiconformal Realizations (QCR)

[Günaydin-Koepsell-Nicolai '00; Günaydin and collaborators...]

Except for $\mathrm{G}_{2}, \mathrm{~F}_{4} \& \mathrm{E}_{8}$, certain non-compact real forms of all simple groups arise as conformal groups of formally real Jordan algebras

Simple Freudenthal
All simple Lie algebras (except $\mathrm{Sl}(2)$) triple systems (FTS)

Using FTS triple product, define a quartic norm

Quasiconformal groups act geometrically on the space coordinatized by FTS and a singlet coordinate defined by the symplectic invariant of FTS Invariance groups of "quartic light cones"

Geometric QCG action of $\mathrm{SU}(2,2) \approx \mathrm{SO}(4,2)$ in a 5 dimensional space
[Günaydin-Fernando '09]
Add a momenta
for singlet \& quantize
Minrep of $\operatorname{SU}(2,2)$ in a 3 dimensional phase space
[KG-Günaydin '13]
Enveloping algebra
HS algebra!

Act I

Description of hs $(4,2)$ using QCG

$$
\begin{aligned}
& \text { 5-grading } \\
& \mathrm{SO}(4,2)=\mathrm{g}^{-2} \oplus \mathrm{~g}^{-1} \oplus \mathrm{~g}^{0} \oplus \mathrm{~g}^{+1} \oplus \mathrm{~g}^{+2} \\
& =\mathbf{1}^{-2} \oplus(2,2)^{-1} \oplus(\mathrm{D} \oplus \operatorname{sp}(2, \mathrm{R}) \oplus \mathrm{SO}(2))^{0} \oplus(2,2)^{+1} \oplus \mathbf{1}^{+2} \\
& \text { Realized as bilinears of } \\
& \text { ordinary bosonic oscillators } \\
& \text { Non-linearly realized } \\
& \text { using quartic invariant }
\end{aligned}
$$

Compact 3-grading

$$
\text { so }(4,2)=(\text { Di-annihilation })^{-1} \oplus\left(\mathrm{su}(2)_{\mathrm{L}} \oplus \mathrm{su}(2)_{\mathrm{R}} \oplus \mathrm{E}\right)^{0} \oplus(\text { Di-creation })^{+1}
$$

Conformal (non-compact) 3-grading

$$
\mathrm{so}(4,2)=\left(\mathrm{P}_{\mu}\right)^{-1} \oplus(\mathrm{so}(3,1) \oplus \mathrm{so}(1,1) \mathscr{O})^{0} \oplus\left(\mathrm{~K}_{\mu}\right)^{+1}
$$

Non-linear twistors

[KG-Günaydin '13]

$$
[\mathrm{x}, \mathrm{p}]=\mathrm{i} \quad\left[\mathrm{~d}, \mathrm{~d}^{\dagger}\right]=1 \quad\left[\mathrm{~g}, \mathrm{~g}^{\dagger}\right]=1
$$

$$
\begin{array}{l|l}
\mathrm{Z}_{1}=1 / 2(\mathrm{x}+\mathrm{ip}-\mathscr{C} / \mathrm{x})-\mathrm{i} \mathrm{~g}^{\dagger} & \mathrm{Y}^{1}=1 / 2(\mathrm{x}-\mathrm{ip}-\mathscr{U} / \mathrm{x})-\mathrm{i} \mathrm{~g} \\
\hat{\mathrm{Z}}_{1}=1 / 2(\mathrm{x}-\mathrm{ip}-\mathscr{C} / \mathrm{x})+\mathrm{i} \mathrm{~g} & \hat{\mathrm{Y}}^{1}=1 / 2(\mathrm{x}+\mathrm{ip}-\mathscr{C} / \mathrm{x})+\mathrm{i} \mathrm{~g}^{\dagger} \\
\mathrm{Z}_{2}=1 / 2(\mathrm{x}-\mathrm{ip}+\mathscr{C} / \mathrm{x})-\mathrm{id} & \mathrm{Y}^{2}=1 / 2(\mathrm{x}+\mathrm{ip}+\mathscr{C} / \mathrm{x})+\mathrm{i} \mathrm{~d}^{\dagger} \\
\hat{\mathrm{Z}}_{2}=1 / 2(\mathrm{x}+\mathrm{ip}+\mathscr{Y} / \mathrm{x})+\mathrm{i} \mathrm{~d}^{\dagger} & \hat{\mathrm{Y}}^{2}=1 / 2(\mathrm{x}-\mathrm{ip}-\mathscr{C} / \mathrm{x})-\mathrm{id}
\end{array}
$$

$\left[\mathrm{X}_{a}, \mathrm{X}_{\beta}\right] \propto 1 / \mathrm{x}\left(\delta_{\alpha \beta} \pm \mathrm{X}_{a} \pm \mathrm{X}_{\beta}\right)$
Generic Z or Y

$$
\mathscr{C}=\mathrm{d}^{\dagger} \mathrm{d}-\mathrm{g}^{\dagger} \mathrm{g}-1 / 2+\zeta
$$

Generators of $\mathrm{SO}(4,2)$

Translations
$P_{a \dot{\beta}}(\zeta)=\left(\sigma^{\mu} P_{\mu}\right)_{\alpha \dot{\beta}}=-Z_{\alpha} \hat{Z}_{\dot{\beta}} \quad K^{\dot{\alpha} \beta}(\zeta)=\left(\bar{\sigma}^{\mu} K_{\mu}\right)^{\dot{\alpha} \beta}=-\hat{Y}^{\dot{\alpha}} Y^{\beta}$

Dilatation

$$
O(\zeta)=(\mathrm{i} / 4)\left(\mathrm{Z}_{a} \mathrm{Y}^{\mathrm{a}}+\hat{\mathrm{Y}}^{\dot{a}} \hat{\mathrm{Z}}_{\dot{\mathrm{a}}}\right)
$$

$\mathrm{Sl}(2, \mathrm{C})$
$X^{\dot{a}}{ }_{\dot{\beta}}(\zeta)=-(1 / 2)\left(\hat{Y}^{\dot{a}} \hat{Z}_{\dot{\beta}}-1 / 2 \delta^{\dot{a}} \hat{Y}^{\dot{Y}} \hat{Z}_{\dot{\gamma}}\right)$
Even though the generators are bilinears, Z \& Y themselves
are non-linear and it is an interacting realization

Joseph ideal

$\mathrm{U}(\mathrm{so}(4,2))=\sum$ Symmetric tensor products in adjoint
$\square \otimes \square=\square \oplus \square_{\substack{\text { Adjint of } \\ \text { sold } 22}}^{\square} \oplus \square \oplus \bullet$
$\mathrm{J}_{\mathrm{ABCD}}=1 / 2\left\{\mathrm{M}_{\mathrm{AB}}, \mathrm{M}_{\mathrm{CD}}\right\}-\mathrm{M}_{\mathrm{AB}} \odot \mathrm{M}_{\mathrm{CD}}-1 / 60<\mathrm{M}_{\mathrm{AB}}, \mathrm{M}_{\mathrm{CD}}>$

Generators JABCD vanish identically in minrep

Joseph ideal

$$
\begin{array}{cc}
\mathrm{P}^{2}=\mathrm{P}^{\mu} \cdot \mathrm{P}_{\mu}=0 & \leftarrow \text { Massless } \rightarrow
\end{array} \mathrm{K}^{2}=\mathrm{K}^{\mu} \cdot \mathrm{K}_{\mu}=0
$$

$\underset{\text { to a c-number }}{\text { Fixes Casimir }} \longrightarrow 4 \Delta \cdot \Delta+\mathrm{M}^{\mu \nu} \cdot \mathrm{M}_{\mu \nu}+\mathrm{P}^{\mu} \cdot \mathrm{K}_{\mu}=0$

$$
\begin{gathered}
\eta^{\mu v} M_{\mu \rho} \cdot M_{v \sigma}-P_{(\rho} \cdot K_{\sigma)}+2 \eta^{\rho \sigma}=0 \\
M_{\mu \nu} \cdot M_{\rho \sigma}+M_{\mu \sigma} \cdot M_{\nu \rho}+M_{\mu \rho} \cdot M_{\sigma v}=0 \\
\Delta \cdot M_{\mu v}+P_{[\mu} \cdot K_{v]}=0 \\
\mu, \nu=0,1, \ldots, 3
\end{gathered}
$$

Deformed Joseph ideal

$$
\mathrm{P}^{2}=\mathrm{P}^{\mu} \cdot \mathrm{P}_{\mu}=0 \quad \leftarrow \quad \text { Massless } \rightarrow \quad \mathrm{K}^{2}=\mathrm{K}^{\mu} \cdot \mathrm{K}_{\mu}=0
$$

$1 / 2 \varepsilon^{\mu \nu \rho \sigma} \mathrm{P}_{v} \cdot \mathrm{M}_{\rho \sigma}=\zeta \mathrm{P}^{\mu} \leftarrow \underset{\text { Pauli - Lübanski }}{\text { vector }} \xrightarrow{1 / 2} \varepsilon^{\mu \nu \rho \sigma} \mathrm{K}_{v} \cdot \mathrm{M}_{\rho \sigma}=-\zeta \mathrm{K}^{\mu}$
$P^{\mu} \cdot\left(M_{\mu \nu}+\eta_{\mu \nu} \Delta\right)=0$

$$
\left(\mathbf{M}_{\mu \nu}+\eta_{\mu \nu} \Delta\right) \cdot \mathbf{K}^{\mu}=0
$$

$\underset{\text { to a c-number }}{\text { Fixes Casimir }} \longrightarrow 4 \Delta \cdot \Delta+\mathrm{M}^{\mu \nu} \cdot \mathrm{M}_{\mu \nu}+\mathrm{P}^{\mu} \cdot \mathrm{K}_{\mu}=0$

$$
\begin{gathered}
\eta^{\mu v} \mathbf{M}_{\mu \rho} \cdot \mathbf{M}_{v \sigma}-\mathbf{P}_{(\rho} \cdot \mathbf{K}_{\sigma)}+2 \eta_{\rho \sigma}=\left(\zeta^{2} / 2\right) \eta_{\rho \sigma} \\
\mathbf{M}_{\mu v} \cdot \mathbf{M}_{\rho \sigma}+\mathbf{M}_{\mu \sigma} \cdot \mathbf{M}_{\nu \rho}+\mathbf{M}_{\mu \rho} \cdot \mathbf{M}_{\sigma v}=\zeta \varepsilon_{\mu v \rho \sigma} \Delta \\
\Delta \cdot \mathbf{M}_{\mu \nu}+\mathbf{P}_{[\mu} \cdot \mathbf{K}_{v]}=-(\zeta / 2) \varepsilon_{\mu v \rho \sigma} M^{\rho \sigma} \\
\mu, \nu=0,1, \ldots, 3
\end{gathered}
$$

Role of ζ in deformed HS algebras

$$
\text { For } \zeta \neq 0
$$

Thus even though, 4-row diagrams do not vanish, they can be dualized to two row diagrams and the deformed HS algebras are still Vasiliev type algebras.

A one-parameter family of HS algebras in 4d were also found by Young Tableaux analysis [Boulanger-Skvortsov '11]

Supersymmetric extension $\operatorname{SU}(2,2 \mid \mathbf{N})$

Fermionic oscillators $\left\{\xi_{\mathrm{I}}, \xi^{\eta}\right\}=\delta_{\mathrm{I}} \mathrm{J}(\mathrm{I}, \mathrm{J}=1, \ldots, \mathrm{~N})$

Odd generators

$$
\begin{gathered}
Q_{\alpha}^{I}=Z_{\alpha}^{s}(\zeta) \xi^{I}, \quad \bar{Q}_{I \dot{\alpha}}=-\xi_{I} \widetilde{Z}_{\dot{\alpha}}^{s}(\zeta) \\
S_{I}{ }^{\alpha}=-\xi_{I} Y^{s \alpha}(\zeta), \quad \bar{S}^{I \dot{\alpha}}=\widetilde{Y}^{s \dot{\alpha}}(\zeta) \xi^{I} \\
\text { SU(N) R-symmetry generators } \\
R^{I}{ }_{J}=\xi^{I} \xi_{J}-\frac{1}{N} \delta^{I}{ }_{J} \xi^{K} \xi_{K}
\end{gathered}
$$

$$
\mathcal{L}_{\zeta} \longrightarrow \mathcal{L}_{\zeta}^{s}=N_{d}-N_{g}+N_{\xi}+\zeta-\frac{5}{2}
$$

Supersymmetric extensions

Superconformal group in $4 \mathrm{~d}-\mathrm{SU}(2,2 \mid \mathrm{N})$

Maximal finite dimensional subalgebra is $\mathrm{SU}(2,2 \mid \mathrm{N})$ and $\operatorname{HS}[\mathrm{SU}(2,2 \mid \mathrm{N}) ; \zeta]$ contains HS algebras of various irreps in supermultiplet of $\mathrm{SU}(2,2 \mid \mathrm{N})$ as subalgebras

QGG for $\operatorname{SO}(3,2) \approx \operatorname{Sp}(4, R)$

Quartic invariant (I_{4})

Symplectic groups $\Rightarrow I_{4}$ vanishes \Rightarrow QCG reduces to usual bilinears

Fock space of oscillators decomposes into 2 irreps of $\mathrm{SO}(3,2)$ namely scalar and spinor singletons

Act II

Description of hs $(6,2)$ using QCG

$$
\left.\begin{array}{rl}
\text { SO-grading } \\
\mathrm{SO}(6,2) & =\mathrm{g}^{-2} \oplus \mathrm{~g}^{-1} \oplus \mathrm{~g}^{0} \oplus \mathrm{~g}^{+1} \oplus \mathrm{~g}^{+2}
\end{array} \begin{array}{c}
\text { [Günaydin-Pavlyk '06; } \\
\text { Günaydin-Fernando '09-'10] }
\end{array}\right]
$$

Compact 3-grading

$$
\text { so }(6,2)=(\text { Di-annihilation })^{-1} \oplus(\mathrm{so}(6) \oplus \mathrm{E})^{0} \oplus(\text { Di-creation })^{+1}
$$

Conformal (non-compact) 3-grading

$$
\mathrm{so}(6,2)=\left(\mathrm{P}_{\mu}\right)^{-1} \oplus(\mathrm{so}(5,1) \oplus \mathrm{so}(1,1) \mathscr{O})^{0} \oplus\left(\mathrm{~K}_{\mu}\right)^{+1}
$$

Massless representations in 6d

	$\mathrm{SO}(4,2)$	$\mathrm{SO}(6,2)$
Little group of massless particles	$\mathrm{U}(1)$	$\mathrm{SO}(4)=\mathrm{SU}(2)_{\mathrm{L}} \mathrm{x}$ $\mathrm{SU}(2)_{\mathrm{A}}$
Labels	Continuous ζ	Discrete $(\mathrm{jL}, \mathrm{jA})$
Non-linear twistors	$\mathscr{\ell}=\mathrm{d}^{\dagger} \mathrm{d}-\mathrm{g}^{\dagger} \mathrm{g}-1 / 2+\zeta$	$\mathrm{T}_{ \pm}, \mathrm{T}_{0}: \mathrm{SU}(2)_{\mathrm{T}}$ generators

Conformally massless reps are of form $\mathrm{j}_{\mathrm{L}} \mathrm{j}_{\mathrm{A}}=0$ i.e. $\left(\mathrm{j}_{\mathrm{L}}, 0\right)$ or $\left(0, \mathrm{j}_{\mathrm{A}}\right)$
"Orbital" generators of SU(2)L get extended to "total angular momentum" $\mathrm{SU}(2)_{\mathrm{T}}$ by adding "spin" generators $\mathrm{SU}(2) \mathrm{s}$

$$
\mathrm{T}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}}+\mathrm{S}_{\mathrm{i}}
$$

Generators of $\mathrm{SO}(6,2)$

Translations
Special conformal
$P_{a \beta}=\left(\Sigma^{\mu} P_{\mu}\right)_{\alpha \beta}=Z_{a}{ }^{i} \hat{Z}_{\beta}{ }^{j} \varepsilon_{i j} \quad K^{\alpha \beta}=\left(\bar{\Sigma}^{\mu} K_{\mu}\right)^{\alpha \beta}=Y^{\alpha i} \hat{Y}^{\beta j} \varepsilon_{i j}$

Dilatation

$$
O)=\left({ }^{1} / 8\right)\left(Z_{a}{ }^{i} Y^{a j}-Y^{a i} \hat{Z}_{a}{ }^{j}\right) \varepsilon_{i j}
$$

$$
\begin{aligned}
\operatorname{SO}(5,1) \quad \mathrm{M}_{a}{ }^{\beta} & =(1 / 2)\left(\mathrm{Y}^{\beta \mathrm{i}} \hat{\mathrm{Z}}_{a}{ }^{\mathrm{j}}-1 / 4 \delta_{a}{ }^{\beta} \mathrm{Y}^{\mathrm{r}} \hat{\mathbf{Z}}_{\gamma}{ }^{\mathrm{j}}\right) \varepsilon_{\mathrm{ij}} \\
& =-(1 / 2)\left(\mathrm{Z}_{a}{ }^{\mathrm{i}} \hat{\mathrm{Y}}^{\beta \mathrm{jj}}-1 / 4 \delta_{a}{ }^{\beta} \mathrm{Z}_{\gamma}{ }^{\mathrm{i}} \hat{Y}^{\text {jj }}\right) \varepsilon_{\mathrm{ij}} \\
a, \beta & =1,2,3,4 \quad \mathrm{i}, \mathrm{j}=1,2
\end{aligned}
$$

Joseph ideal

$$
\begin{array}{ccc}
\mathrm{P}^{2}=\mathrm{P}^{\mu} \cdot \mathrm{P}_{\mu}=0 & \leftarrow \begin{array}{c}
\text { Massless }
\end{array} \rightarrow & \mathrm{K}^{2}=\mathrm{K}^{\mu} \cdot \mathrm{K}_{\mu}=0 \\
\mathrm{~A}_{\nu \rho \sigma}=\mathrm{P}_{[v} \cdot \mathrm{M}_{\rho \sigma]}=0 \leftarrow \begin{array}{c}
\text { Analogs of } \\
\text { Pauli i Lübanski } \\
\text { vector }
\end{array} & \rightarrow \mathrm{E}_{\nu \rho \sigma}=\mathrm{K}_{[v} \cdot \mathrm{M}_{\rho \sigma]}=0 \\
\mathrm{P}^{\mu} \cdot\left(\mathrm{M}_{\mu \nu}+\eta_{\mu \nu} \Delta\right)=0 & \text { vector } & \left(\mathrm{M}_{\mu \nu}+\eta_{\mu v} \Delta\right) \cdot \mathrm{K}^{\mu}=0
\end{array}
$$

Fixes Casimir to a c-number

$$
\longrightarrow 6 \Delta \cdot \Delta+\mathrm{M}^{\mu v} \cdot \mathrm{M}_{\mu v}+2 \mathrm{P}^{\mu} \cdot \mathrm{K}_{\mu}=0
$$

$$
\eta^{\mu \nu} \mathbf{M}_{\mu \rho} \cdot \mathbf{M}_{v \sigma}-P_{(\rho} \cdot K_{\sigma)}+4 \eta^{\rho \sigma}=0
$$

$$
\mathrm{M}_{\mu v} \cdot \mathrm{M}_{\rho \sigma}+\mathrm{M}_{\mu \sigma} \cdot \mathrm{M}_{\nu \rho}+\mathrm{M}_{\mu \rho} \cdot \mathrm{M}_{\sigma v}=0
$$

$$
\Delta \cdot \mathrm{M}_{\mu \nu}+\mathrm{P}_{[\mu} \cdot \mathrm{K}_{v]}=0
$$

$$
\mu, \nu=0,1, \ldots, 5
$$

Deformed Joseph ideal

$$
\begin{array}{ccc}
\mathrm{P}^{2}=\mathrm{P}^{\mu} \cdot \mathrm{P}_{\mu}=0 & \leftarrow \quad \text { Massless } \rightarrow & \mathrm{K}^{2}=\mathrm{K}^{\mu} \cdot \mathrm{K}_{\mu}=0 \\
\mathrm{~A}_{v \rho \sigma}=\tilde{\mathrm{A}}_{v \rho \sigma} & \leftarrow \begin{array}{c}
\text { Self dual and } \\
\text { anti-self-dual }
\end{array} \rightarrow & \mathrm{E}_{v \rho \sigma}=-\tilde{\mathrm{E}}_{v \rho \sigma}
\end{array}
$$

$\mathrm{P}^{\mu} \cdot\left(\mathrm{M}_{\mu \nu}+\eta_{\mu \nu} \Delta\right)=0$

$$
\left(\mathbf{M}_{\mu \nu}+\eta_{\mu \nu} \Delta\right) \cdot \mathbf{K}^{\mu}=0
$$

Fixes Casimir to a c-number

$$
\longrightarrow 6 \Delta \cdot \Delta+\mathrm{M}^{\mu \nu} \cdot \mathrm{M}_{\mu \nu}+2 \mathrm{P}^{\mu} \cdot \mathrm{K}_{\mu}=0
$$

$$
\eta^{\mu v} \mathbf{M}_{\mu \rho} \cdot \mathbf{M}_{\nu \sigma}-P_{(\rho} \cdot K_{\sigma)}+2 \eta_{\rho \sigma}=2 t(t+1) \eta_{\rho \sigma}
$$

$$
M_{\mu v} \cdot M_{\rho \sigma}+M_{\mu \sigma} \cdot M_{v \rho}+M_{\mu \rho} \cdot M_{\sigma v}
$$

$$
\mathrm{M}_{10} \cdot \mathrm{M}_{01}+\mathrm{M}_{10} \cdot \mathrm{M}_{20}+\mathrm{M}_{10} \cdot \mathrm{M}_{0} \text { deformation } \mathrm{SU} \text { (2) spin }
$$

$$
\varepsilon_{\mu \nu \rho \sigma}{ }^{\delta \tau}\left(\Delta \cdot \mathrm{M}_{\delta \tau}+\mathrm{P}_{[\delta} \cdot \mathrm{K}_{\tau]}\right)
$$

$$
\mu, \nu=0,1, \ldots, 5
$$

Deformed $\mathrm{AdS}_{7} / \mathrm{CFT}_{6} \mathrm{HS}$ algebra

$$
h s(6,2 ; \mathrm{t})=\mathscr{U l}\left(\mathrm{so}(6,2)_{\mathrm{OCR}}\right)
$$
 However \square does not vanish for $\mathrm{t} \neq 0$, but, it satisfies an 8 -dimensional self duality condition $\Leftrightarrow 3$-form gauge field with a self dual field strength

AdS7: 3-form gauge fields satisfying odd dimensional self duality

6d: Conformal 2-form fields with a self dual field strength (tensor field of $(2,0)$ supermultiplet)

hs $(6,2 ; \mathrm{t})$ generators include

This suggests theories based on discrete deformations of the minrep describe HS theories of Fradkin-Vasiliev type in AdS_{7} coupled to tensor fields that satisfy self-duality conditions and their higher extensions

Act III

HS holographic dualities and correlation functions

HS holography in $\mathrm{AdS}_{\mathrm{d}}$

What is known?

Vasiliev has constructed d-dimensional HS

 theory of interacting HS fields [Vasiliev ' 11 (cubic coupling in $\mathrm{AdS}_{\mathrm{d}}$]]Totally symmetric massless HS fields

But there are mixed symmetry massless fields in $d>4$
Symmetry algebras for these mixed symmetry fields for

AdS theories

Expected spectrum of mixed symmetry massless

 fields in AdS_{5}Symmetric boundary theory (for $\mathrm{j}_{1}=\mathrm{j}_{2}$) [Heidenreich '80]

$$
D\left(j_{1}+1, j_{1}, 0\right) \otimes D\left(j_{2}+1,0, j_{2}\right)=\sum_{s=0}^{\infty} D\left(j_{1}+j_{2}+2+s, j_{1}+\frac{s}{2}, j_{2}+\frac{s}{2}\right)
$$

Chiral boundary theory

$$
\begin{aligned}
D\left(j_{1}+1, j_{1}, 0\right) \otimes D\left(j_{2}+1, j_{2}, 0\right)= & \sum_{s=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} D\left(j_{1}+j_{2}+2, s, 0\right) \\
& \oplus \sum_{s=0}^{\infty} D\left(j_{1}+j_{2}+2+s, j_{1}+j_{2}+\frac{s}{2}, \frac{s}{2}\right)
\end{aligned}
$$

Tensoring in QCG will lead to an interacting realization of massless fields in bulk for arbitrary ζ [KG-Günaydin (work in progress)]

Spin one boundary theory, one loop corrections to vacuum energy and 4d anomaly coefficients recently studied by [Beccaria-Tseytlin '14]

To be free or to interact, that is the question...

Under certain reasonable assumptions (unitarity, finite \& unique stress tensor...), the dual CFT in 3 dimensions with exactly conserved HS symmetry is free!
[Maldacena-Zhiboedov '11, Boulanger-Ponomarev-Skvortsov-Taronna '13]

There are certainly free CFTs dual to HS theories in d > 3
[Giombi-Klebanov-Tseytlin '14]

No general theorem that forbids interactions in $\mathrm{d}>3$, but no known examples of an interacting theory with exactly conserved HS symmetry either

QCG is non-linear

Generators of conformal transformations contain terms that are cubic and quartic in oscillators
\Downarrow

Interacting realization!

However for $\zeta \in \mathbb{Z}$, isomorphic to doubletons which are free field realizations (bilinears)

What does it mean for the CFTs whose conserved charges are given by QCG generators?

Interacting example in one dimension

$\mathrm{D}(2,1 ; a)$ superconformal quantum mechanics, interacting matrix model with non-linear supersymmetry transformations
[Fedoruk-Ivanov-Lechtenfeld '09]

1-1 mapping of quantum generators of superconformal symmetry with QCG generators for deformed minreps of $\mathrm{D}(2,1 ; a)$
[KG-Günaydin '12]

Probing CFTs: Correlation functions

Conformal symmetry constrains correlation functions but HS symmetries constrain them even further
[Maldacena-Zhiboedov '11]
Weakly broken HS symmetry for even low N 3d Ising Model: $\tau_{4} \approx 1.0208(12)$ [Campostrini et al $\left.{ }^{1} 97\right]$ $1.02 \leq \tau_{\mathrm{s}} \leq 1.037, \mathrm{~s} \geq 6$ [Komargodski-Zhiboedov $\left.{ }^{〔} 13\right]$

Standard oscillator approach: Need to impose constraints/projectors to factor out the ideal

QCG approach: no need for projectors \& straightforward supersymmetric extensions

(Part of) Vasiliev's equations

(relevant for bulk to boundary propagator)

Intertwines HS Master
field containing
HS field strengths in the bulk and the generating function of conserved currents on the boundary
dB+
function

X dependence drops out because change in X is a HS gauge transformation
[Columbo, Sundell '12;
Didenko, Skvortsov '12]

3d: $\left\langle j_{s 1} j_{s 2} j_{s 3}>=\right.$ Free Boson + Free fermion

$4 \mathrm{~d}:<\mathrm{j}_{\mathrm{s} 1} \mathrm{j}_{\mathrm{s} 2} \mathrm{j}_{\mathrm{s} 3}>=$ Free Boson + Free fermion + Free spin-1
[Alba-Diab '13,Boulanger-Ponomarev-Skvortsov-Taronna '13]
Totally symmetric currents
Compute the HS correlators for mixed symmetry fields based on deformed hs $(4,2 ; \zeta)$ using Vasiliev equations for bulk-boundary propagator
[KG-Günaydin-Skvortsov-Taronna (work in progress)]

Encore

QCG methods provide a natural and unified framework for studying HS (super) symmetries in four \& six dimensions and computing n-point correlation functions

Richer spectrum of mixed symmetry massless fields in $\mathrm{AdS}_{\mathrm{d}}(\mathrm{d}>4)$ leads to a variety of CFTs and new HS holographic dualities

Breaking HS symmetries weakly can lead to interesting non-trivial CFTs (with good control) in $4 d$ and $6 d$

Things not addressed

Breaking HS symmetry in higher dimensions?

Application of non-linear twistors to spin chain models associated with $\mathscr{G}=4$ SYM
(Spectral parameter or unphysical helicities for scattering amplitudes in $\mathscr{Y}=4$ SYM corresponds to deformation parameter ζ)
[Ferro-Lukowski-Meneghelli-Plefka-Staudacher '12, '13]

Thank you for your attention

