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Overture



Why study higher spin symmetries?

Motivations



Maximal symmetry

HS symmetries can not result from breaking of  higher 
symmetries

⇓
Manifest at any scale including Planck scale and above ⇒ HS 

gauge theory captures quantum gravity effects

Gravity is sourced by HS fields & vice versa ⇒ Einstein 
gravity cannot be obtained as a truncation & Riemannian 

geometry is not an appropriate tool 

[Fradkin-Vasiliev]

One loop calculations of  free energy show that HS theories 
are one-loop UV finite theories of  quantum gravity  

[Giombi-Klebanov ’13, Giombi-Klebanov-Safdi ’14 ]



Stringy motivations

Tensionless limit of  type IIB string theory in AdS5 x S5 
must reduce to a HS gauge theory (coupled to infinite 

tower of  massless fields).  
[Ferrara-Fronsdal ’98,Haagi-Mani-Sundborg ’00, Konstein-Vasiliev-Zaikin ’00, 
Witten ’01, Beisert-Bianchi-Morales-Samtleben ’04, Sagnotti ’11, Jevicki et al, 

Douglas et al]

There are large N free CFTs with conserved HS 
currents in d=4 (e.g. N=4 SYM in the zero ‘t Hooft 

coupling limit)

AdS/CFT



Symmetry ⇒ Solvability 

∞ dimensional conformal (Virasoro) symmetry in two 
dimensions gives a host of  exactly solvable models 

Conformal symmetry finite dimensional in d>2, so 
we need more symmetries → ∞ HS symmetries! 

However, exact conformal HS symmetry is too 
restrictive & gives free field theories but approximate 

HS symmetry gives non-trivial interacting CFTs

[Belavin-Polyakov-Zamolodchikov ’84]

[Maldacena-Zhiboedov ’11]



Why study higher spin symmetries? 

Higher spin holography.

Motivations



HS/Vector model holography

HS/Vector model duality (AdS4/CFT3) conjectures  
[Klebanov-Polyakov, Sezgin-Sundell, Leigh-Petkou ’02, Giombi-Yin ’09,’10]

AdS4 HS theories are dual to free or critical O(N) boson/
fermion vector model depending on boundary conditions

Generic boundary conditions (parity violating) break some 
HS symmetry and correspond to non-linear boundary 

conformal theories where HS currents interact with HS gauge 
fields and acquire anomalous dimensions [Vasiliev ‘12] 



Vasiliev fields as string bits

Vasiliev theory with 
U(M) Chan-Paton  
factors & N =6 b.c.

U(N)k x U(M)-k  
ABJ theory

[Giombi-Minwalla-Prakash-Trivedi-Wadia ’11, Chang-Minwalla-Sharma-Yin ‘12]

Large N,k

Finite M 
θ0 = πλ/2

Type IIA string theory  
in AdS4 x CP3

Strong bulk ’t Hooft  
coupling 

 λbulk = M/N

RAdS/lstring = (λ)1/4 

∫CP1 B = (N-M)/k 

Bound states of  HS particles Strings



AdS3/CFT2  Story - Minimal model 
Holography

[Gaberdiel-Gopakumar ’11]: The role of  vector models in 2d is 
played by WN,k minimal models.  

Conjecture: Holographic duals are AdS3 Vasiliev higher 
spin theory (tower of  ∞ HS fields coupled to massive 

scalars).

Vasiliev higher spin symmetry organizes all the states  
of  the (T4)N+1/SN+1 orbifold symmetric product  

CFT = Tensionless limit of  strings on AdS3 x S3 x T4 

[Gopakumar Strings ’14, Gaberdiel-Gopakumar ’14]



Why study higher spin symmetries? 

Higher spin holography. 

Extension to d=4 and d=6?

Motivations



Problems

Conformal HS algebras in d=3 are conveniently 
described in terms of  Lorentz covariant 

twistorial oscillators due to SO(3,2) ≈ Sp(4,R)

Extension to d = 4 and 6 is not straightforward 
as the algebras described by Lorentz covariant 

twistorial oscillators are  
d = 4:    Sp(8,R) ⊃ SU(2,2) ≈ SO(4,2)  
d = 6:    Sp(16,R) ⊃ SO*(8) ≈ SO(6,2)



Punchline

The conformal HS algebras in 4 and 6 
dimensions are naturally formulated in terms of  

nonlinear twistors which transform nonlinearly 
under the respective Lorentz groups.

These algebras admit one parameter continuous 
(4d) and discrete (6d) deformations which 
describe mixed symmetry HS algebras.

Straightforward supersymmetric extensions.



HS algebras and singleton/doubleton 
representations 

Prelude



Positive energy unitary representations or lowest 
weight representations

 Conformal group in d>2 
space-time dimensions

Modules labeled by compact subgroup 
SO(d)xSO(2)

SO(d,2)

AdSd+1 symmetry group



Notion of  masslessness is tricky to define in AdS

Gauge degrees of  freedom or reduced d.o.f.

Unitarity = Hilbert space with positive definite 
norm 

Bounds on labels Δ ≥ f(SO(D) labels)
Saturate the bounds

Various “short” and “semi-short” representations

SO(2) label (conformal 
dimension or AdS energy)



SO(4,2)

Positive energy UIR’s classified [Mack ’77]

Labels 4d Poincare 
content AdS5 content

Short/singleton/
doubleton 
(protected)

j1 j2 = 0,  
Δ= j1+j2+1

m = 0  
helicity = j1 - j2

No Poincare limit, 
live on the boundary 

[Günaydin-Marcus ’84]

Semi-short j1≠0, j2≠0 
Δ= j1+j2+2

m > 0 
spin = j1 + j2

Massless 
symmetric + mixed

Chiral semi-short j1 j2 = 0,  
Δ> j1+j2+1

m > 0 
spin = j1 + j2 Chiral massless

Long j1≠0, j2≠0 
Δ> j1+j2+2

m > 0, s = |j1 - 
j2|,..., j1 + j2 Massive



Oscillator methods for SO(4,2) ≈ SU(2,2)
[Günaydin-Marcus, Günaydin-Nieuwenhuizen-Warner ’85, Günaydin-Minic-Zagermann ’98,…]

[ai(ξ) , aj (η)] = δi j δξ, η , [br(ξ) , bs(η)] = δrs δξ, η 

i,j = 1,2    r,s = 1,2    ξ, η = 1,2,...,P  
generations of  oscillators

Lowering operators Lir = ai . br 
Raising operators Lir = ai . br

Li j = aj . ai - ½ δi j ak . ak 
Ri j = bj . bi - ½ δi j bk . bk 

E = ½(ai . ai + br . br)

SU(2)L 
SU(2)R 

AdS energy

Maximal compact subgroup K of  SU(2,2) = SU(2)L x SU(2)R x U(1)E



Oscillator methods
[Günaydin-Marcus, Günaydin-Warner ’85, Günaydin-Minic-Zagermann ’98,…]

P = 1 Short/Singleton/
Doubleton

D(j1+1, j1,0) ⊕ 
D(j2+1,0, j2)

P = 2 Semi-short D(j1+j2+2, j1, j2)

P = 2 Chiral semi-short D(j1+2+n, j1,0) ⊕ 
D(j2+2+n,0, j2)

P > 2 Massive D(E, j1, j2)

Similar results for SO(6,2)



Eastwood-Vasiliev HS algebras 

 hs(d,2) = U (so(d,2))/J (so(d,2))
Universal enveloping algebra

Annihilator of  scalar singleton/
doubleton (Joseph ideal)

[Eastwood ’02]

hs(d, 2) ⇠=
1M

s=0

· · ·
· · ·

trace-free part

| {z }
s

Conformal Killing tensors

hs(d,2) = U (so(d,2)scalar singleton/doubleton module)

⇓

Why do we care about short representations?



Minimal unitary irreducible representation  
(minrep)

Minrep: A unitary realization of  a semi-simple 
Lie algebra on a Hilbert space of  functions with 
minimal number of  variables possible. [Joseph ’74] 

For SO(d,2) the scalar singleton/doubleton 
module is the minrep 

d = 3 [Dirac ’63, Flato-Fronsdal ’78] 

d = 4, 6 [Günaydin-Fernando ’09-’10]



Oscillator representation (one pair) for SO(3,2) directly 
yields the scalar singleton or the minrep

[Vasiliev…, Günaydin ’89]

AdS4 Higher spin (scalar/spinor) algebra hs(3,2) 

Oscillator representation (two pairs) for SO(4,2) and 
SO(6,2) decomposes into infinite irreps (doubletons) 

including minrep 
 [Günaydin-Marcus, Günaydin-Nieuwenhuizen-Warner ’85]

[Sezgin-Sundell ’01, Vasiliev ’05 ]Non-trivial constraints

Enveloping algebra 

AdS5/7 Higher spin (scalar/spinor) algebra hs(4,2), hs(6,2) 



Generalized spacetimes & Quasiconformal  
Realizations (QCR)

Except for G2, F4 & E8, certain non-compact real forms of  all 
simple groups arise as conformal groups of  formally real 

Jordan algebras 

Simple Freudenthal  
triple systems (FTS)

All simple Lie algebras (except Sl(2)) 
g = g -2 ⊕ g -1 ⊕ g0 ⊕ g +1 ⊕ g +2 ⇔

One-dimensional

[Günaydin-Koepsell-Nicolai ’00; Günaydin and collaborators…]

Using FTS triple product, define a quartic norm



Add a momenta  
for singlet & quantize

HS algebra!

Geometric QCG action of  SU(2,2) ≈ SO(4,2) in a 5-
dimensional space 

Minrep of  SU(2,2) in a 3 dimensional phase space

Enveloping algebra

Quasiconformal groups act geometrically on the space 
coordinatized by FTS and a singlet coordinate defined 

by the symplectic invariant of  FTS

Invariance groups of  “quartic light cones”

[Günaydin-Fernando ’09]

[KG-Günaydin ’13]



Act I

Description of  hs(4,2) using QCG



5-grading

so(4,2) = g -2 ⊕ g -1 ⊕ g0 ⊕ g +1 ⊕ g +2 

                           = 1 -2 ⊕ (2,2) -1 ⊕ (Ɗ ⊕ sp(2,R) ⊕ SO(2))0 ⊕ (2,2) +1 ⊕ 1 +2 

Realized as bilinears of   
ordinary bosonic oscillators

Non-linearly realized 
using quartic invariant 

Compact 3-grading

so(4,2) = (Di-annihilation) -1 ⊕ (su(2)L ⊕ su(2)R ⊕ E)0 ⊕ (Di-creation) +1 

Conformal (non-compact) 3-grading

so(4,2) = (Pμ) -1 ⊕ (so(3,1) ⊕ so(1,1)D )0 ⊕ (Kμ) +1 

[Günaydin-Pavlyk ’06;  
Günaydin-Fernando ’09]



Non-linear twistors

[x , p] = i       [d , d†] = 1       [g , g†] = 1

 Z1 = ½(x + ip -L ⁄x) - i g† 

 Ẑ1= ½(x - ip -L ⁄x) + i g 

 Z2 = ½(x - ip +L ⁄x) - i d 

 Ẑ2 = ½(x + ip +L ⁄x) + i d†

 Y1 = ½(x - ip -L ⁄x) - i g 

 Ŷ1= ½(x + ip -L ⁄x) + i g† 

 Y2 = ½(x + ip +L ⁄x) + i d† 

 Ŷ2 = ½(x - ip -L ⁄x) - i d

L  = d†d - g†g - ½ + ζ 
Helicity ζ ∈ ℝ

[KG-Günaydin ’13]

[Xα , Xβ ]∝ 1⁄x (δαβ ± Xα ± Xβ)
Generic Z or Y 



Generators of  SO(4,2)

Pαβ̇ (ζ) = (σμ Pμ)αβ̇ = - Zα Ẑβ̇ Κα̇β (ζ) = (σ̅μ Kμ)α̇β = - Ŷα̇ Yβ

D  (ζ) = (i⁄4) (Zα Yα + Ŷα̇ Ẑα̇) 

Mαβ (ζ) = (½) (Zα Yβ - ½ δαβ Zγ Yγ )  

Mα̇ β̇ (ζ) = -(½) (Ŷα̇ Ẑβ̇ - ½ δα̇β̇ Ŷγ̇ Ẑγ̇ )  
Sl(2,C)

Dilatation

Translations Special conformal

α ,β = 1,2     α̇ , β̇ = 1,2   

Even though the  
generators are 

 bilinears, Z & Y  
themselves 

 are non-linear and 
 it is an interacting 

realization



Joseph ideal

� = � � � •

U(so(4,2)) = ∑ Symmetric tensor products in adjoint

Adjoint of  
SO(d,2)

Factored out by  
Joseph ideal

Generators JABCD vanish identically in minrep

JABCD = 1/2 {MAB , MCD} - MAB⊙MCD - 1/60 <MAB , MCD>



Joseph ideal

P2 = Pμ . Pμ = 0 K2 = Kμ . Kμ = 0

Pμ . (Mμν + ημν Δ) = 0  (Mμν + ημν Δ) . Kμ = 0 

4 Δ . Δ + Mμν . Mμν + Pμ . Kμ = 0 

½ εμνρσ Pν . Mρσ = 0 ½ εμνρσ Kν . Mρσ = 0

ημν Mμρ . Mνσ - P(ρ . Kσ) + 2ηρσ = 0 

Mμν . Mρσ + Mμσ . Mνρ + Mμρ . Mσν  = 0 

Δ . Mμν + P[μ . Kν] = 0 

Pauli - Lübanski 
vector

Fixes Casimir  
to a c-number

Massless

μ, ν = 0,1,…,3



Deformed Joseph ideal

4 Δ . Δ + Mμν . Mμν + Pμ . Kμ = 0 

ημν Mμρ . Mνσ - P(ρ . Kσ) + 2ηρσ = (ζ2⁄ 2) ηρσ 

Mμν . Mρσ + Mμσ . Mνρ + Mμρ . Mσν  = ζ εμνρσ Δ

Δ . Mμν + P[μ . Kν] = -(ζ ⁄ 2) εμνρσ Mρσ 

Fixes Casimir  
to a c-number

P2 = Pμ . Pμ = 0 K2 = Kμ . Kμ = 0

Pμ . (Mμν + ημν Δ) = 0  (Mμν + ημν Δ) . Kμ = 0 

½ εμνρσ Pν . Mρσ = ζ Pμ ½ εμνρσ Kν . Mρσ = - ζ KμPauli - Lübanski  
vector

Massless

μ, ν = 0,1,…,3



Role of  ζ in deformed HS algebras

For ζ ≠0

= �

Thus even though, 4-row diagrams do not vanish, they can be 
dualized to two row diagrams and the deformed HS algebras 

are still Vasiliev type algebras.

A one-parameter family of  HS algebras in 4d were also found  by Young Tableaux analysis 
[Boulanger-Skvortsov ’11]



Supersymmetric extension SU(2,2|N)

Fermionic oscillators {ξI , ξJ} = δI J  (I , J=1,…,N)

QI
↵ = Zs

↵(⇣)⇠
I , Q̄I↵̇ = �⇠I eZs

↵̇(⇣)

S ↵
I = �⇠IY

s↵(⇣), S̄I↵̇ = eY s↵̇(⇣)⇠I

Odd generators

SU(N) R-symmetry generators 

L⇣ �! Ls
⇣ = Nd �Ng +N⇠ + ⇣ � 5

2

Central charge

RI
J = ⇠I⇠J � 1

N
�IJ⇠

K⇠K



Supersymmetric extensions

Superconformal group in 4d - SU(2,2|N)
Enveloping algebra

HS[SU(2, 2|N); 0] =
�

�

SU(2,2|N)
� �� �

• • · · · • · · ·

Maximal finite dimensional subalgebra is SU(2,2|N) 
and HS[SU(2,2|N);ζ] contains HS algebras of  various 
irreps in supermultiplet of  SU(2,2|N) as subalgebras

· · ·

two-row diagramz }| {
()

SU(2,2)
z }| {

· · ·
· · ·

supersymmetrize����������!

SU(2,2|N)

z }| {
• • · · · • · · ·



QCG for SO(3,2) ≈ Sp(4,R)

Quartic invariant (I4)

Non linearities in QCG

Symplectic groups ⇒ I4 vanishes ⇒ QCG 
reduces to usual bilinears

Fock space of  oscillators decomposes into 2 irreps of  
SO(3,2) namely scalar and spinor singletons



Act II

Description of  hs(6,2) using QCG



5-grading

so(6,2) = g -2 ⊕ g -1 ⊕ g0 ⊕ g +1 ⊕ g +2 

                           = 1 -2 ⊕ (4,2) -1 ⊕ (Ɗ ⊕ SO(4) ⊕ sp(2,R))0 ⊕ (4,2) +1 ⊕ 1 +2 

Realized as bilinears of   
ordinary bosonic oscillators Non-linearly realized

Compact 3-grading

so(6,2) = (Di-annihilation) -1 ⊕ (so(6) ⊕ E)0 ⊕ (Di-creation) +1 

so(6,2) = (Pμ) -1 ⊕ (so(5,1) ⊕ so(1,1)D )0 ⊕ (Kμ) +1 

[Günaydin-Pavlyk ’06;  
Günaydin-Fernando ’09-’10]

Conformal (non-compact) 3-grading



Massless representations in 6d
SO(4,2) SO(6,2)

Little group 
of  massless particles U(1) SO(4) = SU(2)L x 

SU(2)A

Labels Continuous ζ Discrete ( jL , jA )

Non-linear twistors L  = d†d - g†g - ½ + ζ T±, T0 : SU(2)T 
generators

Conformally massless reps are of  
form jL jA = 0 i.e. ( jL , 0 ) or ( 0 , jA )

“Orbital” generators of  SU(2)L get extended to “total angular 
momentum” SU(2)T by adding  “spin” generators SU(2)S  

Ti = Li + Si



Generators of  SO(6,2)

Pαβ = (Σμ Pμ)αβ = Zαi Ẑβ j εij Καβ= ( Σ̅μ Kμ)αβ = Yαi Ŷβj εij

D  = (i⁄8) (Zαi Yαj - Yαi Ẑα j) εij

Mαβ = (½) (Yβi Ẑα j - ¼ δαβ Yγi Ẑγ j ) εij  SO(5,1)

Dilatation

Translations Special conformal

       = -(½) (Zαi Ŷβj - ¼ δαβ Zγi Ŷγj) εij  

[KG-Günaydin ’14]

α , β = 1,2,3,4      i , j = 1,2



Joseph ideal

P2 = Pμ . Pμ = 0 K2 = Kμ . Kμ = 0

Pμ . (Mμν + ημν Δ) = 0  (Mμν + ημν Δ) . Kμ = 0 

6 Δ . Δ + Mμν . Mμν + 2 Pμ . Kμ = 0 

Aνρσ = P[ν . Mρσ] = 0 Eνρσ = K[ν . Mρσ] = 0

ημν Mμρ . Mνσ - P(ρ . Kσ) + 4ηρσ = 0 

Mμν . Mρσ + Mμσ . Mνρ + Mμρ . Mσν  = 0 

Δ . Mμν + P[μ . Kν] = 0 

Analogs of  
Pauli - Lübanski 

vector

Fixes Casimir  
to a c-number

Massless

μ, ν = 0,1,…,5



Deformed Joseph ideal

6 Δ . Δ + Mμν . Mμν +2 Pμ . Kμ = 0 

ημν Mμρ . Mνσ - P(ρ . Kσ) + 2ηρσ = 2t(t+1) ηρσ 

Mμν . Mρσ + Mμσ . Mνρ + Mμρ . Mσν  

 εμνρσδτ (Δ . Mδτ + P[δ . Kτ])

Fixes Casimir  
to a c-number

P2 = Pμ . Pμ = 0 K2 = Kμ . Kμ = 0

Pμ . (Mμν + ημν Δ) = 0  (Mμν + ημν Δ) . Kμ = 0 

Aνρσ  =  Ãνρσ  Eνρσ = - ẼνρσSelf  dual and  
anti-self-dual

Massless

deformation SU(2) spin

μ, ν = 0,1,…,5



hs(6,2;t) = U  (so(6,2)QCR)

However      does not vanish for t ≠ 0, but, it satisfies an 
8-dimensional self  duality condition ⇔ 3-form gauge 

field with a self  dual field strength

AdS7: 3-form gauge fields satisfying odd dimensional self  
duality

6d: Conformal 2-form fields with a self  dual field strength 
(tensor field of  (2,0) supermultiplet)

Deformed AdS7/CFT6 HS algebra



· · ·
· · ·

· · ·
· · ·

| {z }
m boxes

· · ·
· · ·

| {z }
n boxes

hs(6,2;t) generators include

This suggests theories based on discrete 
deformations of  the minrep describe HS 
theories of  Fradkin-Vasiliev type in AdS7 

coupled to tensor fields that satisfy self-duality 
conditions and their higher extensions



Act III
HS holographic dualities and  

correlation functions



HS holography in AdSd

What is known?

Vasiliev has constructed d-dimensional HS 
theory of  interacting HS fields  

[Vasiliev ’11 (cubic coupling in AdSd)]
Totally symmetric  
massless HS fields

But there are mixed symmetry massless fields in d>4

Symmetry algebras for these mixed symmetry fields for 
AdS5 and AdS7 [KG-Günaydin ’13, ’14 ]

AdS theories

???
 [Metsaev ’95, Alkalaev-Shaynkman-Vasiliev ’03, 

 Alkalaev ‘12 ]



D (j1 + 1, j1, 0) � D (j2 + 1, 0, j2) =
��

s=0

D
�
j1 + j2 + 2 + s, j1 +

s

2
, j2 +

s

2

�

Expected spectrum of  mixed symmetry massless 
fields in AdS5

[Heidenreich ’80]

Chiral boundary theory

Symmetric boundary theory (for j1 = j2)

D (j1 + 1, j1, 0)⌦D (j2 + 1, j2, 0) =
j1+j2X

s=|j1�j2|

D (j1 + j2 + 2, s, 0)

�
1X

s=0

D
⇣
j1 + j2 + 2 + s, j1 + j2 +

s

2
,
s

2

⌘

Spin one boundary theory, one loop corrections to vacuum energy and 
4d anomaly coefficients recently studied by [Beccaria-Tseytlin ’14]

Tensoring in QCG will lead to an interacting realization of  massless 
fields in bulk for arbitrary ζ [KG-Günaydin (work in progress)]



To be free or to interact, that is the question...

Under certain reasonable assumptions (unitarity, finite & 
unique stress tensor...), the dual CFT in 3 dimensions with 

exactly conserved HS symmetry is free!  
[Maldacena-Zhiboedov ’11, Boulanger-Ponomarev-Skvortsov-Taronna ‘13]

There are certainly free CFTs dual to HS theories in d > 3 
[Giombi-Klebanov-Tseytlin ’14] 

No general theorem that forbids interactions in d > 3, 
but no known examples of  an interacting theory with 

exactly conserved HS symmetry either



QCG is non-linear

Generators of  conformal transformations 
contain terms that are cubic and quartic in 

oscillators
⇓

Interacting realization!

However for ζ ∈ 𝕫, isomorphic to doubletons 
which are free field realizations (bilinears)

What does it mean for the CFTs whose 
conserved charges are given by QCG 

generators?



Interacting example in one dimension

D(2,1;α) superconformal quantum mechanics, 
interacting matrix model with non-linear 

supersymmetry transformations  
[Fedoruk-Ivanov-Lechtenfeld ‘09]

1-1 mapping of  quantum generators of  
superconformal symmetry with QCG generators 

for deformed minreps of  D(2,1;α) 
[KG-Günaydin ‘12] 



Probing CFTs: Correlation functions

Conformal symmetry constrains correlation functions 
but HS symmetries constrain them even further 

[Maldacena-Zhiboedov ’11] 

QCG approach: no need for projectors & 
straightforward supersymmetric extensions

Standard oscillator approach: Need to impose 
constraints/projectors to factor out the ideal 

Weakly broken HS symmetry for even low N 
3d Ising Model: τ4 ≈ 1.0208(12) [Campostrini et al ’97] 
 1.02 ≤ τs ≤ 1.037, s ≥ 6 [Komargodski-Zhiboedov ‘13] 



dΩ +Ω★Ω = 0 
dB + Ω★Β + B★Ω̅ = 0Intertwines HS Master 

field containing  
HS field strengths in the 
bulk and the generating 
function of  conserved 

currents on the boundary

Flat connection that 
defines AdS background

Twisted adjoint 
representation

[Columbo, Sundell ’12; 
Didenko, Skvortsov ’12]

(Part of) Vasiliev’s equations  
(relevant for bulk to boundary propagator)

X

x1

x2

xn
zg

< j (x1) … j (xn) >  = ∑ Tr (Φ (X,x1)★...★ Φ (X,xn))
Depends on B 
and transforms  

in adjoint

X dependence drops out 
 because change in X  

is a HS gauge transformation

n-point correlation 
 function



Compute the HS correlators for mixed symmetry fields 
based on deformed hs(4,2; ζ) using Vasiliev equations for 

bulk-boundary propagator 
[KG-Günaydin-Skvortsov-Taronna (work in progress)]

3d: < js1 js2 js3> = Free Boson + Free fermion 
[Maldacena-Zhiboedov ’11]

4d: < js1 js2 js3> = Free Boson + Free fermion + Free spin-1 
[Alba-Diab ’13,Boulanger-Ponomarev-Skvortsov-Taronna ‘13]

Totally symmetric currents

Light cone limit only works for 
symmetric currents



Encore

QCG methods provide a natural and unified 
framework for studying HS (super) symmetries 

in four & six dimensions and computing n-point 
correlation functions

Richer spectrum of  mixed symmetry massless 
fields in AdSd (d > 4) leads to a variety of  CFTs 

and new HS holographic dualities

Breaking HS symmetries weakly can lead to 
interesting non-trivial CFTs (with good control) 

in 4d and 6d



Things not addressed

Breaking HS symmetry in higher dimensions?

Application of  non-linear twistors to spin chain 
models associated with N  = 4 SYM

(Spectral parameter or unphysical helicities for scattering 
amplitudes in N  = 4 SYM corresponds to deformation 

parameter ζ) 
[Ferro-Lukowski-Meneghelli-Plefka-Staudacher ’12, ’13]
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