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AdS; integrability: brief reminder

e AdS3 x S3 x T# background preserves 16 supersymmetries.

e |IB supergravity backgroud is near horizon limit of mixed
NS5-NS1 + D5-D1 solutions.

* Rads, = Rss.

e S-duality transforms NS-NS 3-form flux into RR such that
coefficients x, k are related x? + k% =1

e Pure NS-NS limit is given by superstring generalization of
SL(2) x SU(2) WZW model and spectrum can be found in
RNS formalation (chiral decomposition of WZW)

e Pure RR limit can be described in GS formulation giving the

PSU(1,1]2) x PSU(1,1|2) « U(1)* and is

SL(2) x SU(2)
classically integrable due to Z4 symmetry

supercoset



AdS; integrability: brief reminder

The mixed flux theory was shown classically integrable in all the
range 0 <x <1

Quantum S-matrix with mixed flux has the same x - independent
symmetry as in pure RR limit, but its representation is x -
dependent: x enters through dispersion relation

There are novel features of AdS3 integrability compared to AdSs
and AdSy :

e massless modes coexist with massive We will consider only
massive sector

e There are more then one dressing phase, and crossing and

unitarity conditions seem to be not enough to fix dressing
phases for S-matrix



Mixed flux classical integrability

ACTION:

The only WZ term which can be added to MT action in the case
of Z4 permutation supercoset G x G/H is (k*> +x% = 1)

1
Smixed = 5 JM(J2 NxJo+ kg N J3) +

2
+ XJ Str(g./z/\Jg/\JQ+J1/\J3/\J2+J3/\J1/\J2)
B

The action is both k-symmetric and integrable iff k> +x? = 1. But
Z4 symmetry is broken to Z;. Change notations:

. XL 0 - XR 0
gL@gRSX—<O XR)' Q4(X)—<0 = XL>'

JLr = & RA8LR



Mixed flux classical integrability

In these notations we introduce non dynamical variable - matrix W:

W= (%) L Qy(W) = —W

and define the supertrace for x € g; @ gr as
Str(x) = Str(x) + Str(xg)

Action
1
Smixed == J Str (JQ Nxt + kA J3)
2 )
2
+XJ Str W (3./2/\./2/\./2+J1/\J3/\J2+J3/\J1/\J2> .
B

is now Z4 invariant, but it is not a physical symmetry.
(Q4(W) = —W is the same as x — —X).



Mixed flux classical integrability
LAX CONNECTION A(x):

We look for solutions A of dA+ A/\ A = 0 with the ansatz
A=Jo+v2h+Vixo+v1h+v3h3
where v; = «;l + 3;W are matrices. In terms of

0u(X) =t + P =X £ \/ 5%()() — K2,

01(x) = a1 + B1 = £/ d2(X) — k0« (X),
03(x) = a3 + B3 = £/ 02(x) + Kkdx(X),

the most general Lax connection

A(x) = = ((6;(x) + 8;(—x))Ji + (8;(x) — di(—x) ) WJ;)

N

i=0,1,2,3,% and §¢(x) = 1.



Mixed flux classical integrability

LAX CONNECTION A(x):
Flat connection is not unique: A — A’ = hAh~! — dhh™ L.
Compared to we use different parametrization for spectral
parameter of A(x) applying gauge transformation. We require:
e |t has standard form at x — O.
e Gauge out Jo: A— a=g(A— J)g~ ! and require

g~ NoeterXcurrent for x — 0o

o A(1/x) = Qa(A(x))
e The poles should coincide with the ones obtained from BE
analysis
It gives:

(x2+1)|< K
2 (x2—1)k —2xx’ 1=+ )\/(x2—1)|<—2xx'

2XK K
=28 3= (x—1 .
(xk —x)2—1 3= X )\/(Xz—l)K—2XX




Mixed flux classical integrability
LAX CONNECTION A(x):

The poles of A(x) are shifted compared to pure RR case and
located at x =s=5,,—1/s=5_,—s=3,,1/s =3%_ where

szsuw=dif§

with residues

1
Alx =) = 5 14+ W) (bt xh) +
Al(x =~ 1)—1(H+W)i(J—*J)+
X ° )75 x+s 172 2
1 —s
1 —1
A(XZSil):E(H—W) —— (L +*h)+



Mixed flux classical integrability
LAX CONNECTION A(x):

The chosen parametrization of Lax connection degenerates in the

pure NS-NS limit (x — 1,k — 0) : only non zero coefficient is
o, =1.

BUT, if we want to avoid this, we can do it preserving a general
parametrization of &, yields

Wb, =1—082, 81 =083 ==%+/087,
or Wb, =1+ 085,01 =—03 ==++0.

without (in general) degeneracy of Lax connection. For example:

1+x%—x2 X+ K
62:721 61:—1

(x—x)*—1 (x—x)2—1
6*:—27X 55 = X —K

(x—x)? -1 (x—x)2—-1



Finite gap equations

Because of restored Z, symmetry a standard procedure for
derivation of finite gap equations can be applied.

With quasimomenta p;(x,x) monodromy matrix

2 _
M(x,x) = Pexp [ Ac(x,x) = U7 (x,x) exp(pi(x, X ) H;) U(x,X),
- gauge invariant and defined up to Weyl group transformations.
By construction, M is given by two blocks, therefore also p : p
with poles at 54,and p with poles at 3+

Encircling a branch point p;(x) — pi(x) — Aimpm(x) + 27tn; ; with
Ay = 0 for fermionic roots - log branch points, A; = 2 for bosonic
roots - 4/ branch points.

A/mpm = 27‘[[‘1/';, X € C/’;



Finite gap equations

Close to the poles

2 x—54
Bi(x ~ &1) 54 Ky F 27ty
I\ X =S - = . ,
P + 2 x45¢
where
S, =s, 5. =—-1/s, ¥ =-—s5, & =1/s.

There should exist a matrix S,y : Q4(Hm) = HnSpm and
pi(1/x) = Simpm(x)

Virasoro constraints are not modified by WZ term

(K/ + 27Tm/)A/k(Kk + 27rmk) =0.



Finite gap equations

Using the residues analysis one can show that spectral rep. of
quasimomenta in terms of discontinuities at the cuts

X (2 fny + R)) + 27t o 5
Bi(x) = < (2mxmy + Ry) 2 I J dyP/()/) +J dypl()/)
(x—s) (x+s71) ¢ x—y Jiyg x—y
27y — k) — 21t 5 0
(27tx iy — &) 2 / J dyP/(Y) +J dyp/()/)
(x+5s)(x—s1) ¢ x—y Jiyq x—y

similar for p;(1/x), pi(1/x)...



Finite gap equations

X (2mtxmy — Ry) — 27ty

Pi(1/x) = x—s D xts) — 27+
J dyf’/(l/)/)JrJ dyf’/(l/Y)JrJ dyﬁ’(l/y)JrJ dyﬁ/(l/y)v
1/C y G y 1/C X—=Yy G X—=Yy
Specifying the grading for ps/(1,12): S=01 @Sy, A=03R A
with

0 -1 0 1 -1 0

A=|-1 2 -1}, S=1]0 -1 0

0 -1 0 0 -1 1

we find

27‘[ﬁ7/ = —J y
G y
oty — +J s P _SlmJ gy PmY)
G Cnm y



Finite gap equations

X (27T)(ﬁ"l/ + ﬁ/) + 27ty
2mhy  =A gy~
nk,l k/ (X_S) (X+571)

dy Pm(y)

+AkIJ‘ dy orly) _AkISImJ = :
q X~y Cn Yo x—1/y

X (2mx My — Rm) — 270y
2mhy i = — A Sim=

y & 5
- AkIJ‘ d}/i)l(y})/ + AwiSim L y}Q/xpj(ly/)y'

Using P; = 2 [ dy%y) we finally get

R =2mE(1,0,1),
m= —2(@— Sj)) =2 <—§)1 + j’l — jjz, —@2 — j’z, —j\>3 + f\]l)g, — j’z)
m= +2(f\]5— 5{]\)) =2 (—j\)l + fjsl + @2, —Hj\)z + f\]52, —@3 + j)3 + fj\)g) ,



Finite gap equations

2ﬂﬁ1,i:_dep2(y) _Jd%/ @52()’1)’
X—Yy y X*yfz

. R R dv 5 dv 5
27rﬁ2,f:2j—dyp2(y) _depl(y)_dep3(y)+lel(y3 +lea(y3

x—y x—y x—y Jy’x—3 Jy’x—1

47tx 1 X 47t
7(xfs)(x+s*1)(E87;M)+ (x —s)(x+s1)

27“33’,_:7de92(}/) 7[%’ B2 y1)'

x—y Jyix—

dv 5

2mv11,,-:+dep2(y) +J% pz(yl)’

X—Yy y X—y*z

. « . dv 5 dv 5
271?72,;:—2J—dyp2(y) +depl(Y)+dep3(Y) _J%pﬂyl) _J%m yl)

x—y xX—y x—y Jyx—3 1y x—3

47tx 1 X 47t
7(x+s)(xfs—1)(;8+;M)+ (X+s)(xfs_1)M'

« J
2ﬂh3,f:+de‘)2(y) J%/ pz(yl)'

X—y y X—=3r

where

M:ﬁjl—j)1+2f]v>2+j>3—f]v>3.



Spin chain symmetry

Ground state
Sites are occupied by (—%, %) reps of psu(1,1|2) with h.w.V.

Vacuum [0) = (V)L_® (V)_L is preserved by 8 super- and 2 central
charges {Q;, Q;, S;, S;, H, H}, i =1,2,

{Qi. S} =8;H, {Qi,5}=25;H
They form psu(1]1)? x u(1)? x psu(1|1)2

Hamiltonian: H = H + H, B
Angular momentum of AdSz: M =H —H

Additionally there are outer automorphisms B; acting on each
psu(1[1)?

The full symmetry preserving the ground state

[u(1) x psu(1]1)2]? x u(1)?



Spin chain symmetry

Excitations
Excitations - states of psu(1,1]2)? - replace one or more ground
state sites. Looking at the Hamiltonian one can select the Ilghtest

set. They form the bifundamental reps of psu 1|1 @ psu 1|1

Q1, 51 52 @ 51, Q1
51 52 52 Q 1, 51
$.Q @, 51 S Q 52

QS 51 )} QS 52 Q

Left/right algebra action on right/left states leads to spin length
change and to two additional central extensions {Q);, (_Qj} =9;P,
{S:, Sj} = 8;;P1, giving the final symmetry

[u(1) & psu(1[1)2]? x u(1)*



Pure RR S-matrix

The all loop massive modes scattering S-matrix of AdSz x S3 x T4
with pure RR flux is 8 = Ssu(1|1)2®Ssu(1\1)2-

follows from the symmetry [S,{Q}] = 0 and YB equation
812813823 = 823813812:

Slbd’) = Lilbd"), Sidw’) = Laldh’) + Lshpd”),
SPP’) = ALpp’), Sibd’) = Ashpd’) + Asldpw’),

Slp’) = Lelph’), Sldd’) = Laoldd’) + Lahpp”),
Sh’) = Aghbd’), SRhD’) = Aohbb’) + Asldd”),

The functions Ly, L3, Ls,A1, A3, As are fixed by the symmetry up
to a common scalar functions o, and Ly, L4, Lg,A2, Ay, A — up to
a common scalar functions G.



Mixed flux: Hoare -Tseytlin S-matrix

WZ term doesn't change the S-matrix symmetry
(u(1) x psu(11)?)? x u(1)*

but change its representation

4 of the 6 central charges are physical and responsible for
dispersion relation. Tree level scattering : two different reps of
excitations

E = \/M(p,x)2 + 16h2k2 sin? g

M(p,x)? = (1 +4xhf(p))?,  M(p,x)* = (1 —4xhf(p))?

Conjectured f(p) = sin(p/2) was later corrected to f(p) = p/2 by
calculation of giant magnon scattering.



Hoare -Tseytlin S-matrix

Dispersion relation
Two different masses for x # 0 lead to the split of Zhukowski

variables into two branches %%, X+

1 1 iM i X
P+ ——% ——=—F=—(1+22P
T T T AP
1 1 iM i X x
Xt+ ——x" ——=—=—(1-22P
x +>“<+ % X~  «kh Kh( K )
.E’:th::b



HT S-matrix

Crossing relation
Dressing phases o, G satisfy crossing equations

1—

_1
x—y*t

2ty Bt 1) =

—y )xt—yt)1—

xty~

o2(xE,1/5%) 2(xE, yF) = <X+)2 (1_ *1?) (1_#) X —

here x*, y* are variables of the same kind (either "hat" or
"check"), and y - of opposite kind to y.



Bethe equations

Nested CBA was constructed for pure RR flux.

Since the S-matrix for mixed flux has the same symmetry the
construction generalizes to mixed flux.

Momentum carrying Bethe roots X, x, X»  and four sets of auxiliary
roots Xy k. X1k, X3,k: X3 k.-

Remark: Spin chain interpretations seems not so natural because
of non periodic dispersion relations, but formally possible. ABA
should be done.



Bethe equations

Ye—x;"
y X = .
J Yk—X
1-1/yix;
Y ssenenesesene J - 1/ka
o L v— L
(@ o-(
P 1 )v(zk 1]

o Xk —x; 1— l/x X ° o
i el _HJ Xe 7X 1— l/st J+$G (kaX_j)

1— l/xk)'( 1— 1/x+s>'<7s_2s _
Xi — .
! Jj 1— l/xk_>_<_1 1/x.° X sO (Xk’XJ)

s=+4 for3 s=— for3



Bethe equations

Ye—x;"
y X = .
J Yk—X
1-1/yix;
Y ssenenesesene J - 1/ka
o L v— L
(@ o-(
P 1 )\/(2<’Fk 1]

o Xk —x; 1— l/x X ° o
i el _HJ Xe 7X 1— l/st J+$G (kaX_j)

1— l/xk)'( 1— 1/x+s>'<7s_2s _
Xi — .
! Jj 1— l/xk_>_<_1 1/x.° X sO (Xk’XJ)

s=+4 for3 s=— for3



NSNS limit of Bethe equations

Coming back from Zhukowski variables to momenta in the limit
K—0,x—1

% = (hfF(P)7 x5 = (ihkfT(p)) !
At . + (A vt : + iy + 1— et
% = ihkf7(q), X =ihxfZ(g)  fE(x) = 1+2hx

Equations for Xp, X» split into 2 each. Auxiliary equations become
identities. One of the four equations:

R/ =R K//

oBe(L-K) _ 1—2[ "’ikfﬂp) -

P (pe) —

=1k €

Ki Ky’ Ky

H (Br. Bj HG Pr. G HG e By HG Pr. )



Dressing phase at tree level

We assume that dressing phase in the leading (tree level) order is
given by AFS phase

i _ _ _
—ElogUAFs(Xi,yi)=x(x+,y+)—x(x+,y )—x(x ",y ) Hx(x T,y )



Finite gap from Bethe equations

Consider Bethe equations in the scaling limit L =~ K; > 1,and take
h > 1. Bethe roots condense to cuts : X; x — Ci, % Xi k — G
Expanding log of BE at large x we obtain global charges of
solutions: J, K - a.m. on S3, S - a.m. on AdSs3, D - global energy:

D:+F<2+§( L+ K — K3) + L+ 8D,
J:—R2+%(“1+R3—K1 Ks) + L,
K=—Rot 5 (Rit Rs + Ko+ Ks) —2X (P 1 P),
5_—R2+%(R + K3+ Ky + K3).

It can be shown that the anomalous dimension

5D = 2khQ, +2§(/5— p)



Finite gap from Bethe equations

Shortening condition at strong coupling can be solved

2T =x+ —&(x) + O(1/h?),

1 x2

&(x) =

With densities defined as

= Z (X k)O(x — Xi k),
K

kh(x—s)(x +s 1)’

Xt = x+ é&(x) +O(1/h?)

1 x2

kh(x +5s)(x —s 1)

&(x) =

<

= > &(%u)8(x — Xi k)
K

log of Bethe equations reproduce the finite gap integral equations.



Finite gap from Bethe equations
Coefficients € and M are expressed through

~ 1 (dy, s K [dy,
Pn= | Lomn) En = | Fml),
« 1 [dy, x K [dy,
=g | Tonlr) B g | Smly)

M:+f/]\)1+j)3—j/>1+25>2—f\p3
8ZL—(6,1+2é2—é3+él+é3—x(j\31—2ﬁ\32+j33+j)1+f]63)

with £ = L/V/A.
Anomalous dimension
5D A o o Ny
— =2(Ex+ &)+ 2x(Pr — P
A (E2 + &E2) + 2x(P2 — P2)

total world sheet momentum

A v

Protal = 47(P2 + P2)



Finite gap in fundamental rep
Introducing the resolvents ("stands for either”or”)

i S &bal) &)
a(x)—;x_m, "’(X)_kzlx—xak'

pi' — pi = 2mny, B> — B3 = 2mns,
pr — p> = 27y, ps' — pi' = 2mns,
~ ~A v A v

p5 —pg = 27tn;, pi—Br = 27tny.

and find them in terms of resolvents, e.g.
pi'(x) = +Hs — H; — Hy
X(G3(0) — G5(0)) + GJ(0) + G4(0) 1 “mpx
(x —s)(x+s71) 2(x—s)(x+s71)




Finite gap in fundamental rep

Synchronized poles correspond to excitations. There are 8 bosonic
(blue) and fermionic (red) different polarizations of excitations.

; A o— b3

—————— e s @ T

. S L SN pl . S L SN p2

+ I I I B R,
P> b1

------ P, O T

2 P1




Semiclassical quantization

For semiclassics we add poles to quasimomenta in analytically
consistent way p;(x) + 6p;(x). Poles will shift the macroscopic
cuts:

(pi +6p))" — (pj +8p))” =2mn, x € Cy,

This fixes position of microscopic cuts (poles) to the leading order
pi(x)) — pi(x}) =2mn, |x}|>1,
and along the macroscopic cuts the perturbation satisfies
(8p))* —(8p)~ =0, xecp.

Possible excitations



Semiclassical quantization
Let N? - the number of excitations with mode number n between
the sheets p; and p;, and Njj = Y, Ni. The energy shift

1
8D =5A+ ) Nj + 5 Z N
AdS3 fermions

From finite gap equations one can find asymptotic x — co of
quasimomenta shifts

) S A
% +§5A + /V?S + N}%

! MY

d pﬁ% == T iAQA_ As
/:JlA Khx +?6A + NéAiA + N%IA
2 R
L NN

+ Nﬁ + Néi



Semiclassical quantization
Residues of p; are given by

res’12p/ (611_62/)&( 12)/\/12: reslzp, (611_621)&( 12)N12
res Bt = (811 — 821)&(x, 2N, res B7 = — (811 — 82i) &(x, 2 )Ny,

Poles of quasi-momenta &p are synchronized

Doy, 5B+|50¢+ 5(3+||0 0,0,0)

1 (5o .8B |50 5B 110,0,0,0)
)
) ~ e (0000||506X6[3/s|5(x SB_)

_l’_

5y, pIpT. B3 It B3IBT ., B5

(0.0, 00||Z'>0c4r 5f3+\50¢+ 3B+)
x—1/s

ln\l—l

and satisfy Z4 symmetry



Semiclassical quantization
BMN string:

BMN solution is the simplest one - no cuts. The classical

quasi-momenta is given by

pi(x) = (p(x), —p(x)lp(x), —p(x)llp(1/x), —p(1/x), p(1/x), —p(1/x))
27txyd

K(x —s)(x—s"1)’

p(x) =

Position of the poles for, e.g. AdS excitations, are fixed by

4 _ d+xn+ 3>+ 2xdn+ n?
Kn

pilxD)—pj(x¥) =2mn, |xJ|>1, x|

Ansatz for perturbed quasimomenta

s (1/s)da , &) . Sxiy)
g e g 5
_ sdoy (1/s)0ox_

~A ~S
o =
T ohix) x—s x+1/s’

5p7 (%)




Semiclassical quantization

BMN string:
and A A A A
SpAL) = —pf(x),  BBA(x) = 5BA(1/x),
5p3 (x) = —8p7 (x) 5p7 (x) = 8p7 (1/x)
ﬁf(xi”A) - ﬁéq(xi"é) = 27tn ,béq(xi”é) - i’)’f‘(xvné) = 27n

The constants a, & can be found from large x expansion, and
residues at the poles, giving A the energy fluctuation. In the

same way other excitations can be added. Finally (¢ = %)

sa=Yy Y (Mp(Verae+i-1)+ i (Ve2-2e+1-1))

all ij n



One loop correction to the dressing phases
To include one loop correction to the dressing phases
o(xF, p* ) = exp(iB(X &t jE)) 5%t y* ) = exp(i0(% &+, jE))
(%, 9%) = ho @ (x*, 3%) + 8 (x*, %) + 0(1/h),
(%", y*) =h8(x i,yi)+é(”(ﬁi.yi)+O(1/h),
to finite gap eq. with driving terms. They

one adds potentials
shift corresponding quasimomenta.

Rz RZ

V&) =) 0 (x5, +) 8 (x,%,),
j=1 j=1

A V2 R2 —

Vx) =) oM (x5, + ) 6W(x %))
j=1 j=1

More generally add potentlals to all quasimomenta, and consider a

one pole excitations x., xJ. Find the potentials from Bethe

equations.



One loop correction to the dressing phases
The full potentials

+oo
n=-—o00 5]
can be written using cot trick:

. 1 Foij, 1 Fpu
V= L dncot(rn) )_(~1)" V)4 L dncot(mn) Y (—1)FV)/,

5 Y

If we look at the BMN frequencies

R n 2 . n 2
.= Z 2 1-—1, n= -] =2 1—1.
; W bl o (2) -2+

they have branch cuts starting at n4 = £iJ(x £ ix) running off to
infinity




One loop correction to the dressing phases

The contour can be chosen as

In

pi(Xn



One loop correction to the dressing phases

For large N cot(7tn) — Fi in the upper/lower half plane.

&(1/x)

N
N
—
>
—
<
-,

1+s
VP =42 J

+
dy .. . &(x) 1 d
5 | setptr-sn el | 5

27 xX—y 2

_s1 —s



One loop correction to the dressing phases

e Express ps in terms of resolvents
e Expand integrand at large x

e Perform the integration

e Perform the antisymmetrization

) MBI N0 ey
W Y) = 47t K(X—s)(X_FSfl)(y_s)(y_i_sfl)X_y
y—sx+s1t
+(X—y)2log<x—sy+5—l>}
601 (x )__&(X)&(y) [1 (x=y)(1+4)— % 1+ xy
V= 47t

K(x—5s)(x+s1)(y+s)(y—s1)1—xy
2 x+stly—s1,

| ( ) .

+(1—xy)2 B\ =5 y+s s

They satisfy 01 (x, y) +01) (x,1/y) = —é% and perfectly
match previously known and other results.




Summary

A set of finite gap equations for string theory on

AdS3 x S3 x T* with mixed flux was constructed for massive
sector, by standard methods reformulating it in formally Z4
preserving way.

Using the HT proposed S-matrix with the modified dispersion
relation, Bethe equations were written. In thermodynamic
limit these equations reproduce the finite gap equations
derived from the world-sheet action.

Few classical string solutions were analysed in finite gap
equations framework

Dressing phases in tree level were conjectured and one loop
level correction was derived by one loop quantization of
algebraic curve



Outlook

e Full S-matrix derivation from gauge fixed world-sheet with
massless excitations and mixed flux - done recently

e Bethe equations with massless excitations and mixed flux - in
progress

e Exact solution for dressing phase from crossing and unitarity
relations is needed to proceed with analysis of Bethe
equations.

e Generalization to the AdS3; x S3 x S3 x ST with mixed flux.

e Bethe equations for massless integrable perturbation of
corresponding CFT, dual would be useful

Thank you



