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Introduction and motivation

e The study of dualities between theories of higher spin gravity and CFTs
with extended symmetries form an important theme in the context of the

AdS/CFT correspondence.
[Klebanov-Polyakov ‘02, Sezgin-Sundell ‘02, Gaberdiel-Gopakumar ‘11]

e Higher spin theories have considerably lesser number of fields as
compared to full-fledged string theories.

e At the same time, these theories go beyond classical supergravity and one
can hope to capture features of string theory in the tensionless limit.

e CFTs dual to these higher-spin theories are not strongly coupled and are
reasonably tractable.

e This enables us to learn a lot from both sides of the duality and
understand holography at a deeper level.
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Introduction and motivation

e In the holographic context, another remarkable development is the
evolution of geometrical methods for calculations of entanglement
entropy (EE) in QFTs.

e Entanglement entropy is a useful probe in quantum information theory,
QFT and many-body physics.

e Although EE is typically difficult to compute in a QFT — holography offers
a simple and elegant route in terms of the Ryu-Takayanagi formula.

o |t states that the EE of a subsystem A is given by the minimal surface in
AdS that ends on the boundary of A.
[Ryu-Takayanagi ‘06]

o A refined observable to study holography.
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Questions

e How does the entanglement entropy behave in CFTs with extended
symmetries?

o Are there any universal results?
A
Sg = E1og‘£sinh = ‘ + 7+ -
6 TE I5)

e What is the functional in the bulk higher spin theory which captures the
entanglement entropy of its dual CFT?
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Entanglement entropy in free CFTs with
VW-symmetries

Shouvik Datta, Justin R. David, Michael Ferlaino, S. Prem Kumar
Higher spin entanglement entropy from CFT
[arXiv:1402.0007] JHEP 1406 (2014) 096.
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Entanglement and Rényi entropies

e Consider a system (with subsystems A and B) having a Hilbert space
which can be written as H = H i ® Hp

e The entanglement entropy is H

sl

Sg = —trapalogpa

where ps = trp(p) is the reduced density matrix.
[Bombelli-Koul-Lee-Sorkin ‘86]

e Rényi entropies are defined as

1
Sn = T _nlogtrApf}‘

It follows that lim,,_,; S,, = SEk.
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Entanglement and Rényi entropies

An example : A system of 2 spins
Consider the state |¥) = cos 6 [t]) + sin |[{1)
0 0 0 0
. . _ |0 cos” 6 cosfsing 0
DIty BT & o= Y] = 0 cosfsind  sin®6 0
0 0 0 0
. . cos? 0 0
Reduced density matrix : p4 = trp(p) = ( 0 sin? 0)
For [EPR) = —= 1) + % |41) we have § = 7/4 and S4 = log 2.
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Entanglement and Rényi entropies

Replica trick : Computing tr p’; by making n copies of the system and then
sewing them together cyclically along the cuts which define the sub-system
A.

[Hozley-Larsen-Wilczek ‘94; Cardy-Calabrese ‘04]

If the partition function on this orbifold or branched Riemann surface
(R,, = C/I') is denoted by Z,, then

Zn(A) 1 /.
Sn = log —
Z7 1-n 27Zp
One can then find the Rényi entropy S,, and then analytically continue it to
n — 1 to obtain the entanglement entropy Sp.

trpj =

v
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Rényi entropies and twist operators

Finding Z,, amounts to finding the partition function of n-copies of the QFT
which has fields obeying certain cyclic conditions

QDi(CE,O+) = @i+1($70_) for z € [uvv]

These can be implemented what are known as twist operators.

The twist operators are generators of cyclic permutation symmetry of the
orbifold.

The partition function on the orbifolded/branched surface can then be
written as a correlation function of twist and anti-twist operators.

Zy < (T (u,0)T (v,0))

[Dixon-Friedan-Matinec-Shenker ‘87; Atick-Sen ‘87; Atick-Dixon-Griffin-Nemechansky ‘88; Saleur ‘88;..]
v
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Free fermion and free boson CFTs

e We shall now consider the free fermion and free boson CFTs in 141
dimensions at finite temperature () — on the infinite cylinder R x Sj.

e These CFTs have an infinite set of conserved currents of increasing spin.

e We shall deform the action by turning on a chemical potential (1)
corresponding to a spin-3 current.

7 = /D(/)exp [— /dzz(ﬁ —p(W(z) + W(Z)))}
[Dijkgraaf ‘96, deBoer-Jottar ‘14]

e We shall then evaluate corrections to the known universal formula for EE
perturbatively in 1/ f.
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Conformal perturbation theory

Thermal entropy

The partition function of the deformed theory is given in holomorphic
conformal perturbation theory as

z =289 [l—u/d2z<W(Z)>CFT+%2/ P /adzz2 (W)W ()t |

The finite temperature correlators can be obtained from those on the plane
by conformal transformation — z = % log w.

76
(6 sinh® = (21 — 22)

<W(Z1)W(Z2)> =

After performing the integrals, one gets

logZ Tc i 8rc 2
L 68" 9p !

which is a corrected Cardy's formula in presence of a spin-3 chemical

potential. [Gaberdiel-Hartman-Jin ‘12; SD-David-Ferlaino-Kumar ‘13; Long ‘14]

4
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Conformal perturbation theory

Entanglement and Rényi entropies

The partition function Z,, on R,, = correlation function of twist fields.

Ly = H (ke (Y1, 91)0k,n (Y2, 52))
%

When the deformation is turned on, this becomes

Zy = H <Uk,n(y1, ]]1)5’]€7n(y27§2) e_/‘fd2zW(z)>
k

k is a label for the eigenfunctions and eigenvalues (e27**/™) of the twist operator.

Bosons : k=0,1,---,n— 1. Fermions : k= —2-% ... 2-L
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Conformal perturbation theory

Entanglement and Rényi entropies

The partition function Z,, on R,, = correlation function of twist fields.

Iy = H (ke (Y1, 51)8 k0 (Y2, 52))
2

When the deformation is turned on, this becomes

Zn =T ((orn (000D} ~ 1 [ P2 (rnWW ()00 (D)

k
= % /d221 /d222 <0'k,n(1)W(2’1)W(Z2)5'k’n(2)> 4 .. )

We thus need to find correlation functions of twist-fields with insertions of
the spin-3 operators.

k is a label for the eigenfunctions and eigenvalues (62’”’“/") of the twist operator.
Bosons : k=0,1,---,n— 1. Fermions : k= —2-% ... n-1l

20 2 2 ¢
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Free fermions

o Consider NV free massless complex fermions, £ = v, @1,.

e This theory has conserved currents of s = 1,2,3,--- the modes of which
form a Wi algebra.
[Pope-Romans-Shen ‘90, Bergshoeff-Pope-Romans-Sezgin-Shen ‘90]

Bosonization

We shall work in the bosonized language in which the twist operators have
an explicit field representation.

| A\

wk’“ =: e ik’“ =%,

The twist operators are o(z,2) =[], : eln [Pan =] :

The spin-3 current is W = —6—‘/5 >, (0pa)?
It is a (3,0) primary in the .J = 0 sector.
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Free fermions

By Wick contractions one can find the correlators (o(1)W (2)5(2)) and
(a(1)W (21)W (22)5(2)). We can then conformal transform them to the
cylinder zpjane = €2™e/B,

After performing the integrals, we have the following expressions.

Rényi entropies

N(n+1) TA 5Np? | 14+n (1 4+n)(7 — 3n?)
Ay=——1 —sinh [ — Th(A)————F——FIs(A
Sn(4) 6n og) sin ( B )‘ 6m2 4n 1) 160n3 2(4)
Entanglement entropy
5Nu? |1 1
Sp(A) = —1og\fsmh( ) |+ 20 [211<A> — 2 T(A)| +OGY)

These reduce to the thermal entropy in the extensive limit, A > .

y
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Integrals

The expressions for the integrals Z; (A, §) and Zo(A, 5) are as follows
71 (A) = /d2z1 /d’{m H4 (21 — 22) G(21) G(22)

Ir (A) = /d221/d222 H?(z1 — 22) G?(21) G%(22)

where

. A
- 7 sinh (”T)
T

HE S B sinh <%) 7 ) B sinh (%) Sinh( (ZB*A)> ’

_ 4n* (4zA A 4mt _ A A 2_ a2
7= 85 (452 com () ~1) + otz { (- oo ()" ()
Ty — 357 (5- 152 coth (22)) + o220t [(1- w8 o (22))P - 1 (2)?

2= p? B B stmhz(%) B B 9\ '8

S F BB S)B®S B8 BBHS  ShLHFHE L
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Free bosons

e Consider NV free massless complex bosons, £ = 0X,0X, + 0X,0X,.

e This theory has conserved currents of s = 2,3, --- the modes of which
form a W [1] algebra.
[Bakas-Kiritsis ‘90]

5
1272

T(z) = —0X,0X, W(z) = (02 X,0X, — 0X,0°X,)

| A

Twist operators?

The twist operators cannot be written explicitly in terms of free fields.

They are abstractly known in terms of OPEs only.
[Dixon-Friedan-Martinec-Shenker ‘87]

Shouvik Datta Entanglement entropy in W-algebra CFTs and holography



Free bosons

We need to find the correlators (o(1)W(2)5(2)) and
<0(1)W(z1)W(22)6(2)>.
Consider the following Green's functions having insertions of pairs of
0, X (2)0p X (w)
(= 0.X(2)00X (W)Fkn(1)0kn(2))
(@kn(1)onn(2))
< - azX(Z)8 X (w )3Z/X(z’) Owr X (w )Uk,n(l)akan(z»
<Uk n(l)ak n(2 )>

Investigating behaviours as z — w, y; and w — y;, the functions can be
fixed completely.

g(z,w;y1) =

f(Z,’LU, Z/vw/;yl) =

We then need to take appropriate combinations of derivatives of these
Green's functions to get the required correlators.
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Free bosons

After performing the integrals, one has

Rényi entropies

2
ISRINE w log ’ésinh <%) ‘ + 560/2
i T 0

2 _
l+nII(A)7(n+l)(n 4)
4n 120n3

I>(A)

Entanglement entropy

Se(A) = glog‘gsinh (%) ’ I

STIA) - S Ta(A)

5 +0(1?)

5cu?
672
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Free bosons

After performing the integrals, one has

Rényi entropies

_c(n+1) B8 . TA 5cu?
Sn(A) = = log ); sinh <7> ‘ + 62

2 _
l+n11(A)f (n+1)(n[ 4)
4n 120n3

I>(A)

Entanglement entropy

+0(1?)

c B . TA S5cu? | 1 1
Sp(A) = glog‘;smh (?) ] s [211@) — 5 72(8)

The expression for the correction to entanglement entropy matches
exactly with that of free fermions.
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Entanglement entropy in higher spin
holography
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Higher spin gravity in 3d and entanglement entropy

e |t has emerged recently that CFTs with J/-symmetry are dual to higher
spin theories of gravity in AdSs.
[Gaberdiel-Gopakumar ‘10]

e Higher spin gravity in 3 dimensions admits a simple description in terms
of a Chern-Simons theory based on a gauge group (sl(IN,R), hs[}\] etc.)
[Blencowe ‘89; Prokushkin-Vasiliev ‘98, ‘99]

e Since these theories go beyond diffeomorphism invariance, one needs to
rethink geometrical notions of black hole horizons and minimal surfaces.

e There exist explicit constructions of black holes and conical defects in
this theory which are characterized in terms of holonomies.

e What is the quantity that generalizes the notion of the Ryu-Takayanagi
minimal surfaces in a higher spin theory?
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Higher spin gravity in 3d and entanglement entropy

It has been proposed that bulk observable which captures EE is terms of a
Wilson line anchored at the endpoints of the entangling interval.
[Ammon-Castro-lgbal ‘13; deBoer-Jottar ‘13; Castro-Llabrés ‘14]

P Sub-system Q

Entanglement entropy

Stpay = — log | lim W(P,Q)
OR po—00 PP=PQ=P0

Wilson line functional in the bulk

W(P,Q) = trr [Poxp (/IQ A) Pesp (/QP 4)}
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Higher spin gravity in 3d and entanglement entropy

e The bulk configuration at finite temperature and carrying a higher-spin
charge is that of the higher spin black hole.
[Gutperle-Kraus ‘11]

e We shall consider black holes in the simplest higher spin theory — based
on the gauge group si(3,R).

e Confining our attention to the BTZ-branch, the EE is computed via the
Wilson line functional to be

g (5| o2 [ ) o () - 55
2

() { (oot (22) - 1)" + (22)7}] + 00

Sg = glog

v
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Higher spin gravity in 3d and entanglement entropy

e The bulk configuration at finite temperature and carrying a higher-spin
charge is that of the higher spin black hole.
[Gutperle-Kraus ‘11]

e We shall consider black holes in the simplest higher spin theory — based
on the gauge group si(3,R).

e Confining our attention to the BTZ-branch, the EE is computed via the
Wilson line functional to be

g (5| o2 [ ) o () - 55
e () { (3 () 1) + ()}] 0w

v

Sg = glog

The first correction to the entanglement entropy is exactly the same
as that of the free boson and free fermion theories!
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Universality — a posteriori

Quite surprisingly, the entanglement entropy to O(u?) is exactly the same
for two distinct free field theories and also from a holographic calculation.

A= -3 (or +3) A=0 A=1
@ t t @ 9@

sl(3, R) @ sl(3, R) gravity Free fermions Free bosons

Space of W [A] theories

Is this suggestive of an universal correction to higher spin entanglement
entropy?

Shouvik Datta Entanglement entropy in W-algebra CFTs and holography



Universality of higher-spin corrections to
entanglement entropy

Shouvik Datta, Justin R. David, Michael Ferlaino, S. Prem Kumar
A universal correction to higher spin entanglement entropy
[arXiv:1405.0015] Phys.Rev.D 90, 041903(R).
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Correlators on the n-sheeted Riemann surface

e We had just seen that the calculation of the higher spin correction to EE
is tantamount to computing one- and two-point functions ‘in the twisted

sector’ — (G (y1)W (2)a(y2)) and (F(y1)W (21)W (22)0 (y2)).

e This is equivalent to finding the correlators on the replica geometry
which is a n-sheeted Riemann surface R,

; ~ (0]a(y1)W (2)o(y2)|0)
WDz, = = Qlatunotm))
w5 E)W (z2)o()I0)
WEW e, (Ol 2)o2)0)
e Can we try to find such multi-sheeted correlators in the W, [\] theory

YA?
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Correlators on the n-sheeted Riemann surface

By conformal invariance the required correlator can be expressed as

5¢/6m2 1
(212)6 \Z/12\2d“

(oY1, G1)W (20)W (22)0 (y2, 52)) = — Fz)

Here x = % which is the conformal cross-ratio.

dn = $5(n — L) is the dimension of the twist operator.

Properties of F'(x)

e Invariance under exchanges z1 <> 2o and y; <> y2 : F(x) = F(1/x).
o W(z1)W(z2) OPE 21 — 25 : F(x — 1) = 1.

e TV approaching a twist z; — y1 2 0r 29 = Y12t F(z — 00) ~ x
F(z — 0) ~ =M. (next slide)

M and
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Correlators on the n-sheeted Riemann surface

The value of M is constrained by the OPE of the spin-3 current with the

twist 1

W (2)on(y) ~ () (y) + -

(e—yM "

The excited twists have dimension greater than d,,. Thus, M < 3 by
dimensional analysis.

Also, there shouldn’t be any branch cuts because W = ). W; is invariant
under the action of twists. This forces M = 2.

These requirements specify F'(z) to be
F(z) = F(n) =1+ fin+ fan®

7 is the symmetrized cross ratio given by
(21 — 2’2)2(91 - y2)2
(21 = y1)(21 — y2) (22 — y1)(22 — y1)

1
NERF==2=
2
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Correlators and W, [\| OPEs

The unknown coefficients f; o can be determined by comparing the
behaviour of the 4-point correlator (G (y1,y1)W (21)W (22)0 (y2, 2)) in the
21 — 2o limit with OPEs of the W, [)\] algebra.

5¢/6 5T (z2) 5T (z2)/2
(21 - 22)6 (Zl - 22)4 (Z1 - 22)3

75U (22) + a5 A (22) + 3T (23)
2

N%W(Zl)W(@) ~

(Zl - 22)
Nl‘saU(ZQ) + ﬁaj\@)(/@) + %T”’(zz)

21 — 22

+

We need to find the expectation values of the operators on R,, appearing on
the OPE above.
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Correlators and W, [\| OPEs

The unknown coefficients f; o can be determined by comparing the

behaviour of the 4-point correlator (G (y1,y1)W (21)W (22)0 (y2, J2)) in the
z1 — 2o limit with OPEs of the W..[\] algebra.

N¢3<W(21)W(Z2)> ~ (2156/22)6 + (i<1T(2222)> (<Z = 22>)

1\‘713 (U(z2)) + c+22/5<A D(22)) + 2{T"(22))
(21 — 22)?
Ni38<U(22)> + ﬁa@x(ﬁl)(/@» %<T”/( )>

21 — 22

+

We need to find the expectation values of the operators on R,, appearing on
the OPE above.
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The uniformization transformation

There exists a uniformization transformation which maps the entire
n-sheeted Riemann surface R,, to the complex plane C.

1/n
Z— Y2
Wplane =
2=

The one-point functions of the operators on R,, which appear in the OPEs
can be found by using the conformal transformation above.

[Cardy-Calabrese ‘09]

Example : The one-point function of the stress tensor.
T(2) = w'(2)°T(w) + 5 {w, 2}
The non-vanishing contribution is only from the Schwarzian derivative.

¢ (n®-1) A?
<T(Z)>7zn =3 g2 (z—11)2(z — 2)2

Other composite operators (A®W) = ( : TT : —39°T) can also be found by
point-splittings.

4
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Fixing the correlator

We can fix the correlator (5 (y1,y1)W (21)W (22)0(y2, §2)) by comparing

1 5¢/6 5(T(22))  5(T"(22))/2
e (W (21)W (22)) 0 T ) = 2)?
N + oraa7s (AW (22)) + H(T"(22))
Just the W3 subalgebra + (71 — 22)2
tributes! "
onbel e+ o (M) + H(T ()
z1 — 22

with
the Laurent series expansion in (z; — z3) of

(T (y1, J)W (z0)W (22)0 (y2,G2)) _ 5c/6n”

(W(21)W (22)) = (5(y1,51)0(y2, 52)) T (e2)8

(1L+ fin + fan?)
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Fixing the correlator

We obtain
_ {0y, 51)W (21)W (22)0(y2,52)) _ be/6m> )
W en, = G motm ) G AT
e (-1 (@2-1)
n?—1 n? —1)>2 n?—1
h=—"z fo="o0m T dom

This is true for a CFT with a W, [\] symmetry for any A.
(Also, matches with the correlator for the free boson CFT calculated earlier.)

One can also perform the same exercise using the OPEs of the Wy, CFT
and see that it does match with that of the free fermions.

Consistency check : This method of evaluating <T(21)T(22)>R agrees with
the expression for the same calculated from Ward identities.

V.
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Universality of the correlation function

* We have proved that the correlator (W (z1)W (z2)) on the n-sheeted
Riemann surface R,, is universal for a W, [\] CFT.

e In order to get finite temperature correlators, we conformal transform to
the cylinder R x S3.

e One needs to compute the integrals of this two point function to obtain
the correction to the partition function on the replica geometry.

e This implies that the O(u?) correction to the entanglement/Renyi
entropy is universal.

e The results are true for all values of the central charge.

e The methods employed here can be used more generally to study
deformations of CFTs by holomorphic operators.
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Relative entropy in higher-spin
holography

Shouvik Datta
Relative entropy in higher spin holography
[arXiv:1406.0520].
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Relative entropy

Definition and properties

e Relative entropy is a measure of distinguishability of two states for a
quantum system.

e For two density matrices o and p, the relative entropy is defined as

S(ollp) = tr(ologo) — tr(olog p)

e Properties
1. Non-negativity : S(co||p) > 0.
2. Invariance under unitary trans : S(o||p) = S(UTcU||UTpU).
3. Monotonicity under partial traces : S(o||p) > S(trpol|trpp)
4. Additivity : S(ca ® oBl|p) = S(oallp) + S(osllp)

[Vedral ‘02]
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Relative entropy

Relationship with the modular Hamiltionian and entanglement entropy

For a given (reduced) density matrix, the modular Hamiltonian is defined as
= tr(e=H)

It can then be shown that the relative entropy is
S(allp) = A(H) — AS
The relative entropy vanishes in the limit of small sub-system sizes

e () -AS) =0 =  A(H)=AS

The first law of entanglement

[Blanco-Casini-Hung-Myers ‘13]
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Relative entropy in a VV-algebra CFT and its
holographic dual

e We shall try to calculate the relative entropy between a high temperature
state and the vacuum in a CFT with ¥V symmetries in presence of a
chemical potential for the spin-3 current.

The CFT is at large central charge and on a finite system of size R and
the high temperature state is at temperature 7.

e As we had seen earlier such a CFT is describable in terms of higher-spin
gravity.

e |t is possible to calculate <HA> from the holographic stress tensor. The
EE (S4) is also calculable in terms of Wilson lines.

e We shall try to verify A<HA> = AS in the short distance regime.
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The bulk configurations

The gravity configurations dual to the vacuum and high temperature state
of the CFT are the higher spin vacuum and black hole respectively.

[Gutperle-Kraus ‘11; Kraus-Perlmutter ‘11; Castro-Gopakumar-Gutperle-Raeymaekers ‘11;
Li-Lin-Wang ‘13; Compere-Jottar-Song ‘13; Chowdhury-Saha ‘13]

D T

Vacuum High temperature state

The higher spin vacuum is a higher spin generalization of global AdS. It has
trivial holonomy along the spatial ¢ cycle.

The higher spin black hole generalizes the BTZ. Its temporal cycle 7 has
trivial holonomy.
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Modular Hamiltonians in CFT

The modular Hamiltonian is not a local quantity in general. However, there
exist special cases where it is local and calculable.
[Casini-Huerta-Myers ‘11]

The modular Hamiltonian associated with the vacuum in a 1+1 d CFT is

K 0 _ b
Hyac = 21 R? / i R ¥ ()

=3 sin 9
Here, Too = (Lo — 55) + (Lo — 57)- These can be obtained from the
holographic stress tensor for specific states.

[Balasubramanian-Kraus ‘99, de Haro-Solodukhin-Skenderis ‘00]
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Modular Hamiltonian from holographic stress tensor

The stress tensors corresponding to the hs-vacuum and the hs-black hole
can be obtained by solving holonomy conditions.

When a higher spin chemical potential is turned on perturbatively, the
Ws x Ws asymptotic symmetry is unbroken.
[Compere-Song ‘13; Compere-Jottar-Song ‘13; deBoer-Jottar '14]

The expectation values of the modular Hamiltonian are therefore

<H>state - tr(pstateHvac) = 8TR? [1 = %CO'L (;b)] Lstate

where,
_enT? 80(wuT)?  2560(muT)*  905216(wuT)°
Lr == |1 3 3 + 27 T
__ |20yt 160 cpnt 1444 (p e
Lac==mrmz |17 3 (R) T3 (R) 27 (R) -

The difference A(H') can then be calculated.

4
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Holographic entanglement entropy
The EEs — computed via Wilson lines — corresponding to higher spin black
holes and the vacuum in the sl(3) theory are

inh(wRT
Sr(6) =S g SR

3
(muT)?csch* (m RT'¢) [8 (1 — 372 R*T%$?) cosh(2n RT $)

c

+18

+87RT¢ (sinh(2wr RT'¢) + sinh(4wRT'¢))
—5cosh(4mRT) — 3 } + O((muT)h)

2R
Svac(d)) :g IOg‘F sin (g) ’

I 7% (%) 2 csct (%) [3 —2(3¢% + 4) cos(¢) + 4¢(sin(¢) + sin(2¢))

+5 cos(2q§)] + O((u/R)*)

One can systematically keep track of terms to higher orders.
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Relative entropy in holographic CFTs with a
W-symmetry

We can now employ the thermodynamic-like relation to calculate the relative
entropy between the high-temp state and the vacuum.

S(prllpvac) = (<H>T - <H>\,ac) — (51 — Svac)

We shall focus on the small-subsystem size regime where we expect
A(H) = AS.
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Relative entropy in holographic CFTs with a
W-symmetry
The following can then be established via holographic computations.

AS

to ¢2 to ¢2

((eT)?+1)  5((T)*—1) p> 20 ((¢7)° +1) p
™ 5 R 27 R*

| 1768 ((e7)® =1) pb 57664 ((¢1)'° +1) p®

243 RS 729 R3

:(;¢2

At the leading order in entangling interval sizes, AH = AS in a large-c CFT
with a W5 symmetry at finite higher spin chemical potential. (¢ = 27 R)

v

If the AdS is considered as the ultimate vacuum, A<H> = AS can be verified for
that case as well.
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Relative entropy in holographic CFTs with a
W-symmetry

Comments

e We have verified the first law of entanglement holographically — in the
regime of short intervals and at finite chemical potential for a higher spin
current.

e This ensures the vanishing of the relative entropy which is expected to be
true for any quantum mechanical system.

e The relative entropy in (1+1)d is independent of the UV cut-off. It's a
refined observable in this sense.

e We have also probed the short-distance behaviour of the holographic EE
and seen that it has the desired behaviour.

e All this lends strong support in favour of the holomorphic-Wilson line
functional as the bulk observable which captures entanglement entropy.
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Summary & Outlook
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To summarize ...

e We have evaluated the entanglement entropy in CFTs with
W-symmetries deformed by a chemical potential for a higher-spin
current.

e Computations were initially done using free field theories which have a
higher-spin symmetry algebra.

e The first correction due to non-zero chemical potential is universal. This
was proved using OPEs and uniformization techiniques.

e This universality was also confirmed by the Wilson line functional for
holographic entanglement entropy.

e We also investigated relative entropy in this context. We found from
holography that it has the expected behaviour in the short distance
regime.
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Ongoing work

e Analysing entropies of free fields on the torus with chemical potentials
(modular forms, elliptic functions ...).

e How can the replica trick/uniformization be realized in the dual
Chern-Simons language?
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Thank you.
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Backup slides
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A bit about )V algebra CFTs

e The symmetry algebra of 14+-1-dimensional CFTs is that of two copies of
the Virasoro algebra. This symmetry is infinite-dimensional.
[Belavin-Polyakov-Zamolodchikov ‘84]

e One may consider studying higher-spin extensions of the Virasoro algebra
- Wn algebras. [Zamolodchikov ‘85]

These non-trivial extensions play a role in analysis and classification of
CFTs and also appear as scaling limits of Z lattice models.

These are also the symmetries of coset-WZW models, massless free
fermions/bosons, RCFTs etc.

Shouvik Datta Entanglement entropy in W-algebra CFTs and holography



A bit about )V algebra CFTs

Example

The commutation relations for the Vs algebra are
_ c 2 .
nybom| — - n+m v - n+m, =
[Lny, L] = (n—m)Lptm + 12n(n 1)dn+m,0 (Virasoro sub-algebra)
[LTU Wm} = (277' - m)Wn+m

(Wi, Win] = (n — m) 1—15(n+m+2)(n+m+3) - %(n+2)(m+2) Loim

16 (4) c 2 2
5¢ i 29 (TL - m)An+m + %n(n - 4) (n - 1)5n+m,0

The global part at ¢ — oo or the wedge subalgebra is that of s/(3,R).
Wi are Laurent modes of the (3,0) primary operator.
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Method of images

The correlator <WW> on R,, can also be obtained by direct conformal
transformation of the 2-point function on the plane.

5 o o a \ A /
Upon the uniformization transformation \ J/
1/n \ /o ew
— [ 2=Y2 2mip/n N \ / _-
Wy, = (Z_yl) e , the pth o \ y
replica gets mapped to a sector on the SN $ P~
~ a8,
complex plane. ~F >
-/
This is another well-known way of il /
performing from the replica trick by 7 b
o o a a . /
introducing a conical singularity at the J/
origin. /

We then need to sum over the images since W = Z;’;& Wp.

It can be seen that the same answer for (W (z1)W (z2))
[Long ‘14]

R, 1S reproduced.
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Regularization prescription

e We indeed encounter improper integrals while doing conformal
perturbation theory.

e A principal value prescription is chosen to regulate these integrals

/ dTg/ dO'Q/ dT1 / d0'1 <W(21)W(ZQ)>
0 —00 0 —00

e The spatial integrals are then performed first

i3 "To
/ dry ( / )dﬁ (m)Q(m2)) — 52<Q2>
0 0 To+€
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Regularization prescription

e We indeed encounter improper integrals while doing conformal
perturbation theory.

e A principal value prescription is chosen to regulate these integrals

/Ow dry /_O; do (/Of /Tﬁe) dn/_ doy (W (z1)W (22))

e The spatial integrals are then performed first

i3 To
/ d7-2< / )dﬁ (M)Q(m)) — B%Q%)
0 0 To+€
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A thermodynamic relation for relative entropy

S(ollp) =tr(clno) —tr(clnp)
=tr(oclno) —tr(plnp) + tr(pln p) — tr(o ln p)
=-S5, + 8, —tr(pH,) + tr(c H,)
= ((&), - (&),) - (5 = 5,)
=A(H)-AS
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