## High-energy scattering in strongly coupled $\mathcal{N}=4$ SYM

Martin Sprenger

Seminar ETH Zürich
based on 1207.4204, 1311.1512, 1405.3658 and 1411.2495 with J. Bartels, J. Kotanski and V. Schomerus



## ETHzürich

## Motivation

- planar $\mathcal{N}=4$ integrable $\leftrightarrow$ can compute observables for any coupling
- scattering amplitudes particularly interesting
- functions of kinematical invariants
- techniques for less symmetric theories
- enormous progress on weak coupling side
- how do amplitudes behave at strong coupling?
- interpolation to intermediate coupling


## Main results

## simple results in high-energy limit at strong coupling:

- MRL corresponds to IR limit of TBA
- $e^{R_{6}} \sim\left(-\left(1-u_{1}\right) \sqrt{\tilde{u}_{2} \tilde{u}_{3}}\right)^{\frac{\sqrt{\lambda}}{2 \pi} e_{2}}$
- 7-point amplitude calculated $\rightarrow$ simple result
- correspondence: Regge cut contributions $\leftrightarrow$ excitations of TBA


## Scattering Amplitudes via AdS/CFT

```
[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira], [Basso/Sever/Vieira]
```



- $\mathrm{A} \sim e^{-\frac{\sqrt{\lambda}}{2 \pi} \operatorname{Area}\left(+\frac{\sqrt{\lambda}}{48} \frac{(n-4)(n-5)}{n}\right)}$
- $k_{i}=x_{i-1}-x_{i}$
$\rightarrow$ polygon depends only on $u=\frac{x_{i j}^{2} x_{k \mid}^{2}}{x_{i k}^{2} x_{j l}^{2}}$
- $\mathrm{Y}_{a, s}(\theta)$ generalized cross ratios $\rightarrow$ for $n$ gluons: $3 n-15$ Y-functions
[Figure from 1002.2459]

$$
\begin{aligned}
\log Y_{a, s}(\theta)= & -m_{s} \cosh \theta \pm C_{s} \\
& +\sum_{a^{\prime}, s^{\prime}} \int d \theta^{\prime} \mathcal{K}_{s, s^{\prime}}^{a, a^{\prime}}\left(\theta-\theta^{\prime}+i \varphi_{s}-i \varphi_{s^{\prime}}\right) \log \left(1+\mathrm{Y}_{a^{\prime}, s^{\prime}}\left(\theta^{\prime}\right)\right)
\end{aligned}
$$

## Scattering Amplitudes via AdS/CFT

```
[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira], [Basso/Sever/Vieira]
```



- $\mathrm{A} \sim e^{-\frac{\sqrt{\lambda}}{2 \pi} \operatorname{Area}}\left(+\frac{\sqrt{\lambda}}{48} \frac{(n-4)(n-5)}{n}\right)$
- $k_{i}=x_{i-1}-x_{i}$
$\rightarrow$ polygon depends only on $u=\frac{x_{i j}^{2} x_{k}^{2}}{x_{i k}^{2} x_{j \mid}^{2}}$
- $\mathrm{Y}_{a, s}(\theta)$ generalized cross ratios $\rightarrow$ for $n$ gluons: $3 n-15$ Y-functions
[Figure from 1002.2459]

$$
\begin{aligned}
\log Y_{a, s}(\theta)= & -m_{s} \cosh \theta \pm C_{s} \\
& +\sum_{a^{\prime}, s^{\prime}} \int d \theta^{\prime} \mathcal{K}_{s, s^{\prime}}^{a, a^{\prime}}\left(\theta-\theta^{\prime}+i \varphi_{s}-i \varphi_{s^{\prime}}\right) \log \left(1+Y_{a^{\prime}, s^{\prime}}\left(\theta^{\prime}\right)\right)
\end{aligned}
$$

## Scattering Amplitudes via AdS/CFT

```
[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira], [Basso/Sever/Vieira]
```



- $\mathrm{A} \sim \mathrm{e}^{-\frac{\sqrt{\lambda}}{2 \pi} \operatorname{Area}}\left(+\frac{\sqrt{\lambda}}{48} \frac{(n-4)(n-5)}{n}\right)$
- $k_{i}=x_{i-1}-x_{i}$
$\rightarrow$ polygon depends only on $u=\frac{x_{i j}^{2} x_{k}^{2}}{x_{i k}^{2} x_{j j}^{2}}$
- $\mathrm{Y}_{a, s}(\theta)$ generalized cross ratios $\rightarrow$ for $n$ gluons: $3 n-15$ Y-functions
[Figure from 1002.2459]

$$
\begin{aligned}
\log Y_{a, s}(\theta)= & -m_{s} \cosh \theta \pm C_{s} \\
& +\sum_{a^{\prime}, s^{\prime}} \int d \theta^{\prime} \mathcal{K}_{s, s^{\prime}}^{a, a^{\prime}}\left(\theta-\theta^{\prime}+i \varphi_{s}-i \varphi_{s^{\prime}}\right) \log \left(1+Y_{a^{\prime}, s^{\prime}}\left(\theta^{\prime}\right)\right)
\end{aligned}
$$

## Y-System

$$
\begin{aligned}
\text { Area } & =\mathrm{A}_{\text {div }}\left(x_{i}\right)+\mathrm{A}_{\text {periods }}\left(m_{s}, \varphi_{s}\right)+\Delta\left(u_{i}\right) \\
& +\sum_{s} \int \frac{d \theta}{2 \pi}\left|m_{s}\right| \cosh \theta \log \left[\left(1+\mathrm{Y}_{1, s}\right)\left(1+\mathrm{Y}_{3, s}\right)\left(1+\mathrm{Y}_{2, s}\right)^{\sqrt{2}}\right](\theta)
\end{aligned}
$$

- non-divergent piece: remainder function $e^{R}$
- Y-system easy to solve numerically
- BUT: not solvable analytically for arbitrary kinematics!


## Intermezzo: Regge limit

- consider 1-loop gluon amplitude in Regge limit $s \rightarrow \infty, t$ fixed


- leading n-loop contribution $\sim \alpha^{n} \log ^{n} s$
- in limit $s \rightarrow \infty$ : $\alpha \log s \sim \mathcal{O}(1)$
- need to resum leading contributions from all loop orders



## Multi-Regge limit



- for $2 \rightarrow n-2$ scattering: $3 n-10$ Mandelstam invariants
- Multi-Regge limit: rapidities of produced particles strongly ordered
$\rightarrow$ hierarchy for $s_{i} \ldots j:=\left(p_{i}+\cdots+p_{j}\right)^{2}$

$$
s \gg s_{3 \cdots n-1}, s_{4 \cdots n} \gg s_{3 \cdots n-2}, \ldots, s_{5 \cdots n} \gg \cdots \gg s_{34}, \ldots \gg-t_{1}, \ldots,-t_{n-3}
$$

- $\mathcal{N}=4$ dual conformal $\rightarrow$ choose $3 n-15$ cross ratios $u_{\text {as }}$
- kinematical analysis:
$u_{1 s} \rightarrow 1, u_{2 s}, u_{3 s} \rightarrow 0$ with $\tilde{u}_{2 s}=\frac{u_{2 s}}{1-u_{1 s}}=\mathcal{O}(1), \quad \tilde{u}_{3 s}=\frac{u_{3 s}}{1-u_{1 s}}=\mathcal{O}(1)$


## Y-system in the MRL

[1207.4204]

- $u_{\text {as }}=\left.\frac{\mathrm{Y}_{2 s}}{1+\mathrm{Y}_{2 s}}\right|_{\theta=i\left(k \pi / 4-\varphi_{s}\right)}$
- demand that cross ratios show behavior predicted by MRL


## Example: 6-point case

$$
u_{2} \rightarrow 0 \Rightarrow \mathrm{Y}_{2}\left(\theta=i \frac{\pi}{4}\right) \stackrel{!}{\rightarrow} 0
$$

$$
\log Y_{2}\left(\theta=i \frac{\pi}{4}\right)=-\sqrt{2} m \cos \left(\frac{\pi}{4}-\varphi\right)+\sum_{s^{\prime}} \int d \theta^{\prime} \mathcal{K}\left(\theta-\theta^{\prime}\right) \log \underbrace{\left(1+\mathrm{Y}_{s^{\prime}}\left(\theta^{\prime}\right)\right)}_{\cong 1+e^{-m_{s^{\prime}} \cosh \theta^{\prime}}}
$$

## Y-system in the MRL

- MRL realized for choice $m_{s}$ large, $\varphi_{s} \rightarrow-(s-1) \frac{\pi}{4}, C_{s} \rightarrow$ const.
- in this limit, integrals in Y-system can be neglected

$$
\log Y_{a, s}(\theta) \cong-m_{s} \cosh \theta \pm C_{s}+\mathcal{O}\left(e^{-m}\right)
$$

- $\rightarrow$ MRL corresponds to IR limit of TBA
- but: in this limit $R$ trivial
- need to generalize Regge limit $\rightarrow$ Regge regions


## Multi-Regge regions

- $2^{n-4}$ regions, corresponding to the signs of $E_{i}$
- different regions connected by analytic continuation in $s_{i} \rightarrow s_{i} e^{i \alpha}$

- for the above example $P_{6,--}$ :

$$
\begin{aligned}
s_{34} \rightarrow e^{i \pi} s_{34} \quad s_{56} & \rightarrow e^{i \pi} s_{56}, \quad s_{345} \rightarrow e^{i \pi} s_{345}, \quad s_{456} \rightarrow e^{i \pi} s_{456} \\
& \Rightarrow u_{1} \rightarrow e^{-2 \pi i} u_{1}, \quad u_{2} \rightarrow u_{2}, \quad u_{3} \rightarrow u_{3}
\end{aligned}
$$

- probe analytic structure of amplitude


## MRL at weak coupling - 6-points

## [Bartels/Lipatov/Sabio Vera, Lipatov/Prygarin, Fadin/Lipatov]

- $R$ contains cuts $\Rightarrow$ MRL depends on Regge region:
- $R_{6,++}$ vanishes in MRL
- Regge cut appears in Regge region $R_{6,--}$

$$
\left.e^{R_{6,--}+i \pi \delta}\right|_{\mathrm{MRL}}=\cos \omega_{a b}+i \frac{\lambda}{2} \sum_{n} \int \frac{d \nu}{\nu^{2}+\frac{n^{2}}{4}}|w|^{2 i \nu} \Phi_{\operatorname{Reg}}(\nu, n)\left(-\left(1-u_{1}\right) \sqrt{\tilde{u}_{2} \tilde{u}_{3}}\right)^{-\omega(\nu, n)}
$$



- universal building blocks: BFKL eigenvalue $\omega(\nu, n)$, impact factor $\Phi_{\text {Reg }}(\nu, n)$


## Multi-Regge regions in the Y-system

- continuation in $u_{\text {as }} \sim$ continuation in $m, C, \varphi \rightarrow[$ Dorey $/$ Tateo]
- (numerical) inversion of $u_{a s}=\left.\frac{\mathrm{Y}_{2 s}}{1+Y_{2 s}}\right|_{\theta=i\left(k \pi / 4-\varphi_{s}\right)}$ to find paths for parameters
- solutions of $Y_{a, s}(\theta)=-1$ can cross real axis

$$
\begin{aligned}
\log \mathrm{Y}_{a, s}(\theta)= & -m_{s} \cosh \theta \pm C_{s} \\
& +\sum_{a^{\prime}, s^{\prime}} \int d \theta^{\prime} \mathcal{K}_{s, s^{\prime}}^{a, a^{\prime}}\left(\theta-\theta^{\prime}+i \varphi_{s}-i \varphi_{s^{\prime}}\right) \log \left(1+\mathrm{Y}_{a^{\prime}, s^{\prime}}\left(\theta^{\prime}\right)\right)
\end{aligned}
$$

- crossing leads to contributions to $R$

$$
R^{\prime}=\int \frac{d \theta}{2 \pi}\left|m_{s}\right| \cosh \theta \log \left[\left(1+\mathrm{Y}_{\mathrm{a}, \mathrm{~s}}(\theta)\right)\right] \pm i\left|m_{s}\right| \sinh \left(\theta_{0}\right)+\ldots
$$

- endpoint explicitly enters $R$


## Multi-Regge regions in the Y-system

- continuation in $u_{\text {as }} \sim$ continuation in $m, C, \varphi \rightarrow$ [Dorey $/$ Tateo]
- (numerical) inversion of $u_{a s}=\left.\frac{\mathrm{Y}_{2 s}}{1+\mathrm{Y}_{2 s}}\right|_{\theta=i\left(k \pi / 4-\varphi_{s}\right)}$ to find paths for parameters
- solutions of $Y_{a, s}(\theta)=-1$ can cross real axis

$$
\begin{aligned}
\log Y_{a, s}(\theta)= & -m_{s} \cosh \theta \pm C_{s}+\sum \log \mathcal{S}_{s, s^{\prime}}^{a, a^{\prime}}\left(\theta-\theta_{0}+i \varphi_{s}-i \varphi_{s^{\prime}}\right) \\
& +\sum_{a^{\prime}, s^{\prime}} \int d \theta^{\prime} \mathcal{K}_{s, s^{\prime}}^{a, a^{\prime}}\left(\theta-\theta^{\prime}+i \varphi_{s}-i \varphi_{s^{\prime}}\right) \log \left(1+\mathrm{Y}_{a^{\prime}, s^{\prime}}\left(\theta^{\prime}\right)\right)
\end{aligned}
$$

- crossing leads to contributions to $R$

$$
R^{\prime}=\int \frac{d \theta}{2 \pi}\left|m_{s}\right| \cosh \theta \log \left[\left(1+\mathrm{Y}_{\mathrm{a}, \mathrm{~s}}(\theta)\right)\right] \pm i\left|m_{s}\right| \sinh \left(\theta_{0}\right)+\ldots
$$

- endpoint explicitly enters $R$


## Multi-Regge regions in the Y-system

- continuation in $u_{\text {as }} \sim$ continuation in $m, C, \varphi \rightarrow$ [Dorey/Tateo]
- (numerical) inversion of $u_{a s}=\left.\frac{\mathrm{Y}_{2 s}}{1+\mathrm{Y}_{2 s}}\right|_{\theta=i\left(k \pi / 4-\varphi_{s}\right)}$ to find paths for parameters
- solutions of $Y_{a, s}(\theta)=-1$ can cross real axis

$$
\log Y_{a, s}(\theta)=-m_{s} \cosh \theta \pm C_{s}+\sum \log \mathcal{S}_{s, s^{\prime}}^{a, a{ }^{\prime}}\left(\theta-\theta_{0}+i \varphi_{s}-i \varphi_{s^{\prime}}\right)
$$

- crossing leads to contributions to $R$

$$
R^{\prime}=\int \frac{d \theta}{2 \pi}\left|m_{s}\right| \cosh \theta \log \left[\left(1+\mathrm{Y}_{\mathrm{a}, \mathrm{~s}}(\theta)\right)\right] \pm i\left|m_{s}\right| \sinh \left(\theta_{0}\right)+\ldots
$$

- endpoint explicitly enters $R$


## Example: 6-point case

[Bartels/Kotanski/Schomerus, 1311.1512]


$$
u_{1} \rightarrow e^{-2 \pi i} u_{1}, u_{2} \rightarrow u_{2}, u_{3} \rightarrow u_{3}
$$



Solutions of $\mathrm{Y}_{3}(\theta)=-1$ along continuation

## Determination of endpoints

- endpoints of crossed solutions can be determined analytically


## Endpoint condition

$$
-1=\mathrm{Y}_{3}^{\prime}\left(\theta_{+}\right)=e^{-m^{\prime} \cosh \left(\theta_{+}\right)+C^{\prime}} \cdot \frac{\mathcal{S}_{3}\left(\theta_{+}, \theta_{-}\right)}{\mathcal{S}_{3}\left(\theta_{+}, \theta_{+}\right)}
$$

- for every Regge region get set of BAE which determines remainder function
- numerical input just provides discrete information on crossing


## 6 -point result

- Remainder function has Regge behavior:

$$
e^{R_{6,--+i \pi}} \sim\left(-\left(1-u_{1}\right) \sqrt{\tilde{u}_{2} \tilde{u}_{3}}\right)^{\frac{\sqrt{\lambda}}{2 \pi} e_{2}}
$$

- $e_{2}=-\sqrt{2}+\log (1+\sqrt{2}) \sim-.533<0$
- $\delta=\frac{1}{4} \gamma_{K} \log \sqrt{\tilde{u}_{2} \tilde{u}_{3}}$
- weak coupling:
$\left.e^{R_{6},--+i \pi \delta}\right|_{\mathrm{MRL}}=i \frac{\lambda}{2} \sum_{n} \int \frac{d \nu}{\nu^{2}+\frac{n^{2}}{4}}|w|^{2 i \nu} \Phi_{\operatorname{Reg}}(\nu, n)\left(-\left(1-u_{1}\right) \sqrt{\tilde{u}_{2} \tilde{u}_{3}}\right)^{-\omega(\nu, n)}+\ldots$
- dominant saddle point at strong coupling? [Basso/Caron-Huot/Sever]
- cut contribution @ weak coupling $\leftrightarrow$ crossing solution @ strong coupling


## 7-point amplitude, predictions from weak coupling

- 7-point cut from two reggeized gluons, as in 6-point case
- predictions obtained from analysis of Regge factorization of BDS ansatz

$\rightarrow$ short cut in $1-u_{11}$

$\rightarrow$ long cut in $\left(1-u_{11}\right)\left(1-u_{12}\right)$

$\rightarrow$ short cut in $1-u_{12}$

$\rightarrow$ all three cuts contribute


## 7-point amplitude, paths with short cut



$$
\begin{array}{ll}
u_{11} \rightarrow e^{-2 i \pi} u_{11}, & u_{21} \rightarrow u_{21},
\end{array} \quad u_{31} \rightarrow u_{31}, ~ l i u_{12}, \quad u_{22} \rightarrow e^{-i \pi} u_{22}, u_{32} \rightarrow e^{i \pi} u_{32}
$$

- one pair of crossing solutions
- analogously for mirrored path
- calculation different, we still find:


Crossing solutions of $\mathrm{Y}_{32}(\theta)=-1$

$$
\begin{aligned}
& R_{7,--+}\left(u_{\text {as }}\right)=R_{6,--}\left(u_{11}, u_{21}, u_{31}\right) \\
& R_{7,+--}\left(u_{\text {as }}\right)=R_{6,--}\left(u_{12}, u_{22}, u_{32}\right) \\
& \hline
\end{aligned}
$$

## 7-point amplitude, paths with long cut



$$
\begin{aligned}
& u_{11} \rightarrow u_{11}, u_{21} \rightarrow u_{21}, u_{31} \rightarrow u_{31} \\
& u_{12} \rightarrow u_{12}, u_{22} \rightarrow u_{22}, u_{32} \rightarrow u_{32}
\end{aligned}
$$

- for 7 points, we get dependent cross ratio $\tilde{u}$
- from kinematics for above path: $\tilde{u} \rightarrow e^{-2 \pi i} \tilde{u}$
- in conflict with Gram relation: $\tilde{u} \cong \frac{\nu_{11}+u_{12}-1}{u_{11} u_{12}}$


Deformed path for $u_{1 a}$

- deform path s.th. winding numbers of cross ratios are preserved
- $u_{11} \rightarrow e^{2 i \pi}\left(1-\sqrt{1-e^{-2 i \pi}}\right) u_{11}, u_{12} \rightarrow e^{2 i \pi}\left(1-\sqrt{1-e^{-2 i \pi}}\right) u_{12}$


## 7-point amplitude, paths with long cut

$$
\begin{aligned}
& u_{11} \rightarrow e^{2 i \pi}\left(1-\sqrt{1-e^{-2 i \pi}}\right) u_{11}, u_{21} \rightarrow u_{21}, u_{31} \rightarrow u_{31} \\
& u_{12} \rightarrow e^{2 i \pi}\left(1-\sqrt{1-e^{-2 i \pi}}\right) u_{12}, u_{22} \rightarrow u_{22}, u_{32} \rightarrow u_{32}
\end{aligned}
$$

- two pairs of crossing solutions
- both approach same endpoints

$$
\rightarrow \theta_{ \pm}= \pm i \frac{\pi}{4}
$$



Crossing solutions of $\mathrm{Y}_{31}(\theta)=-1$

$$
R_{7,---}\left(u_{a s}\right)=R_{6,--}\left(u_{11}, u_{21}, u_{31}\right)+R_{6,--}\left(u_{12}, u_{22}, u_{32}\right)
$$

## 7-point amplitude, paths with long cut

$$
\begin{aligned}
& u_{11} \rightarrow e^{2 i \pi}\left(1-\sqrt{1-e^{-2 i \pi}}\right) u_{11}, u_{21} \rightarrow u_{21}, u_{31} \rightarrow u_{31} \\
& u_{12} \rightarrow e^{2 i \pi}\left(1-\sqrt{1-e^{-2 i \pi}}\right) u_{12}, u_{22} \rightarrow u_{22}, u_{32} \rightarrow u_{32}
\end{aligned}
$$

- two pairs of crossing solutions
- both approach same endpoints

$$
\rightarrow \theta_{ \pm}= \pm i \frac{\pi}{4}
$$



Convergence against endpoint

$$
R_{7,---}\left(u_{a s}\right)=R_{6,--}\left(u_{11}, u_{21}, u_{31}\right)+R_{6,--}\left(u_{12}, u_{22}, u_{32}\right)
$$

## 7-point amplitude, paths with long cut



$$
\begin{aligned}
& u_{11} \rightarrow e^{2 i \pi} u_{11}, u_{21} \rightarrow e^{-i \pi} u_{21}, u_{31} \rightarrow e^{i \pi} u_{31} \\
& u_{12} \rightarrow e^{2 i \pi} u_{12}, u_{22} \rightarrow e^{i \pi} u_{22}, \quad u_{32} \rightarrow e^{-i \pi} u_{32}
\end{aligned}
$$

- for this path $\tilde{u} \rightarrow e^{-2 i \pi} \tilde{u}$, no deformation needed
- no evidence for crossing solutions
$\Rightarrow R_{7,-+-}\left(u_{a s}\right)$ trivial up to phase
- comparison with weak coupling prediction: possible cancellation?
- path too naive?


## 7-point amplitude, paths with long cut



$$
\begin{aligned}
& u_{11} \rightarrow e^{2 i \pi} u_{11}, u_{21} \rightarrow e^{-i \pi} u_{21}, u_{31} \rightarrow e^{i \pi} u_{31} \\
& u_{12} \rightarrow e^{2 i \pi} u_{12}, u_{22} \rightarrow e^{i \pi} u_{22}, \quad u_{32} \rightarrow e^{-i \pi} u_{32}
\end{aligned}
$$

- for this path $\tilde{u} \rightarrow e^{-2 i \pi} \tilde{u}$, no deformation needed
- no evidence for crossing solutions
$\Rightarrow R_{7,-+-}\left(u_{a s}\right)$ trivial up to phase
- comparison with weak coupling prediction: possible cancellation?
- path too naive?



## Summary and Outlook

- studied scattering amplitudes in strongly coupled $\mathcal{N}=4$ SYM
- identified MRL and showed that Y-system equations simplify in MRL
- calculated 6-point and 7-point remainder function $\rightarrow$ consistency with weak coupling predictions
- correspondence: Regge cut contributions $\leftrightarrow$ crossing solutions


## next steps:

- understand $R_{7,-+-}$ : path too naive?
- weak coupling prediction: 3 Reggeon contribution for 8 points
- understand BAE $\leftrightarrow$ Regge region


