3d Higher Spins Coupled to Scalars

Max-Planck-Institut
für Gravitationsphysik
(Albert-Einstein-Institut)
based on hep-th/1505.05887 with G.Lucena-Gomez, E.Skvortsov, M.Taronna hep-th/1508.04139 with N.Boulanger, E.Skvortsov, M.Taronna

Pan's Plan:

Part 1: Vasiliev Theory: What is it good for?

Part 2: Vasiliev Theory: How does it work?

In this talk we will focus on the bulk physics:

basic open questions in the bulk:

action?

degree of locality?

spectrum?

quantization?
how to extract interactions?

Part 1:

Vasiliev Theory: What is it good for?

Free Theory on AdS-background:

$$
\square \phi_{m(s)}-\nabla_{m} \nabla^{n} \phi_{n m(s-1)}+\frac{1}{2} \nabla_{m} \nabla_{m} \phi_{n m(s-2)}^{n}-\Lambda m_{s}^{2} \phi_{m(s)}+2 \Lambda g_{m m} \phi_{m(s-2) n}^{n}=0
$$

Example:
 $s=2$
 $\Lambda=0$

$$
\square h_{m m}-\partial_{m} \partial^{n} h_{n m}+\frac{1}{2} \partial_{m} \partial_{m} h_{n}^{n}=0
$$

But this is $R_{m m}^{L \text { in }}=0$

$$
\begin{gathered}
g_{m m}=\eta_{m m}+\kappa h_{m m} \\
R_{m m}=\kappa R_{m m}^{L i n}+\mathcal{O}\left(\kappa^{2}\right)
\end{gathered}
$$

Can one construct fully nonlinear equations of motion for HS fields?

Vasiliev can !!!

???
higher spin particles?
Him

$$
\square \phi_{m(s)}-\nabla_{m} \nabla^{n} \phi_{n m(s-1)}+\cdots=j_{m(s)}(\{\phi\})
$$

We cranked the handle up to second order in perturbations around AdS.

$$
\begin{aligned}
& \phi_{m n}=g_{m n}^{A d S}+\kappa h_{m n}^{(I)}+\kappa^{2} h_{m n}^{(2)}+\mathcal{O}\left(\kappa^{3}\right) \\
& \phi_{m(s)}=\quad \kappa \phi_{m(s)}^{(1)}+\kappa^{2} \phi_{m(s)}^{(2)}+\mathcal{O}\left(\kappa^{3}\right) \text { for } s \neq 2
\end{aligned}
$$

The result for spin 2 :

Restrict to scalar sector (independently conserved)

Metsaev [2006]: Up to field redefinitions the spin-s current involving two scalars contains only s derivatives.

$$
\square \phi_{m(s)}+\left.\ldots\right|_{\phi \phi}=\sum_{k=0}^{s}\left(b_{k} \nabla_{m(s-k)} \phi \nabla_{m(k)} \phi+\text { traces }\right)
$$

Can also be determined from symmetry arguments
[P.K, G. Lucena Gomez, E.Skvortsov, M. Taronna]

We fixed the complete cubic action!

Construct a field redefinition to relate the two results:

$$
\begin{aligned}
& \left.\square \phi_{m(s)}+\left.\ldots\right|_{\phi \phi}=\sum_{k=0}^{s} \sum_{l=0}^{\infty}\left(a_{l, k} \nabla_{m(s-k) n(l)} \phi \nabla_{m(k)}^{n(l)} \phi\right) \text { traces }\right) \\
& \nabla_{m(s-k) n(L)} \phi \nabla_{m(k)}^{n(L)} \phi
\end{aligned}
$$

redefinition of $\phi_{m(s)}$

$$
\sum_{l=0}^{L-1} \# \nabla_{m(s-k) n(l)} \phi \nabla_{m(k)}^{n(l)} \phi
$$

$\longrightarrow C_{L} \nabla_{m(s-k)} \phi \nabla_{m(k)} \phi$

So in total we get:

divergent!

$$
\square \phi_{m(s)}+\cdots=j_{m(s)}
$$

Theorem: Any source term $j_{m(s)}$ can be removed by a pseudo-local field redefinition.

Idea: Use AdS/CFT as a consistency check

$$
\begin{gathered}
S=\int \frac{1}{2} \Phi\left(\square-m^{2}\right) \Phi+\Psi\left(\square-M^{2}\right) \Psi-a_{0} \Phi^{2} \Psi-a_{।}(\partial \Phi)^{2} \Psi+\ldots \\
\Psi \rightarrow \Psi+\frac{1}{2} a_{1} \Phi^{2} \\
S^{\prime}=\int \frac{1}{2} \Phi\left(\square-m^{2}\right) \Phi+\Psi\left(\square-M^{2}\right) \Psi-\left(a_{0}+\frac{1}{2} a_{।}\left(2 m^{2}-M^{2}\right)\right) \Phi^{2} \Psi+\ldots
\end{gathered}
$$

3pt calculation using source term before and after field redefinition leads to the same result.

$$
\begin{aligned}
& \square \phi_{m(s)}+\cdots=\sum_{k=0}^{s} \sum_{l=0}^{\infty}\left(a_{l, k} \nabla_{m(s-k) n(l)} \phi \nabla_{m(k)}^{n(l)} \phi+\text { traces }\right) \\
& \square \phi_{m(s)}+\cdots=\sum_{k=0}^{s} \sum_{l=0}^{\infty}\left(c_{l} a_{l, k} \nabla_{m(s-k)} \phi \nabla_{m(k)} \phi+\text { traces }\right)
\end{aligned}
$$

But this is puzzling:

$$
\square \phi_{m(s)}+\cdots=j_{m(s)}(\phi, \phi)
$$

DIVERGES!

FINITE!

Summary of Part 1:

- Extraction of $j_{m(s)}$ to second order in perturbations around AdS.

- Criterion for allowed field redefinitions is found.
- 3pt function calculated from gauge fields diverges.

Part 2:

Vasiliev Theory: How does it work?

[Hopefully out soon: "Lectures on Minimal Model Holography",

A. Campoleoni, S. Fredenhagen, P.K., G. Lucena Gomez]

Step1: Linearised Equations

$$
y_{\alpha} \quad \alpha \in\{0, I\}
$$

$$
y_{\alpha} y_{\beta}=y_{\beta} y_{\alpha}
$$

$$
\text { obeying: } \quad \varphi^{2}=1
$$

$$
\varphi y_{\alpha}=y_{\alpha} \varphi
$$

Star product:

$$
(f \star g)(y)=f(y) \mathrm{e}^{-i \stackrel{\overleftarrow{\partial}}{\alpha} \overbrace{}^{\alpha \beta} \overbrace{\partial_{\beta}}} \mathrm{g}(\mathrm{y})
$$

Rep of AdS isometry algebra: $\quad L_{\alpha \beta} \sim y_{(\alpha} \star y_{\beta)} \quad P_{\alpha \beta}=\varphi L_{\alpha \beta}$

$$
\begin{aligned}
& {\left[L_{\alpha \beta}, L_{\alpha^{\prime} \beta^{\prime}}\right]_{\star}=\epsilon_{\alpha \alpha^{\prime}} L_{\beta \beta^{\prime}}+\ldots} \\
& {\left[L_{\alpha \beta}, P_{\alpha^{\prime} \beta^{\prime}}\right]_{\star}=\epsilon_{\alpha \alpha^{\prime}} P_{\beta \beta^{\prime}}+\ldots} \\
& {\left[P_{\alpha \beta}, P_{\alpha^{\prime} \beta^{\prime}}\right]_{\star}=\epsilon_{\alpha \alpha^{\prime}} L_{\beta \beta^{\prime}}+\ldots}
\end{aligned}
$$

AdS - background:

$$
\bar{\Omega}=\bar{\omega}^{\alpha \beta} L_{\alpha \beta}+\overline{\mathrm{e}}^{\alpha \beta} \boldsymbol{P}_{\alpha \beta} \sim\left(\bar{\omega}^{\alpha \beta}+\varphi \overline{\mathbf{e}}^{\alpha \beta}\right) \boldsymbol{y}_{(\alpha} \star y_{\beta)}
$$

Obeying the equation of motion:

$$
d \bar{\Omega}-\bar{\Omega} \wedge \star \bar{\Omega}=0
$$

Metric is obtained from:

$$
g_{m n}^{\text {AdS }}=\overline{\mathrm{e}}_{m}^{\alpha \beta} \overline{\mathrm{e}}_{\alpha \beta n}
$$

A natural generalisation to HS case:

$$
\Omega=\sum_{s}\left(\omega^{\alpha(2 s)}+\varphi \mathrm{e}^{\alpha(2 s)}\right) y_{\left(\alpha_{1}\right.} \star \cdots \star y_{\left.\alpha_{2 s}\right)}
$$

Obeying the equation of motion:

$$
\begin{aligned}
& D_{\Omega} \Omega=d \Omega-\bar{\Omega} \wedge \star \Omega-\Omega \wedge \star \bar{\Omega}=0 \\
& \qquad \\
& \begin{aligned}
D_{\Omega} F & =d F-\bar{\Omega} \wedge \star F+(-I)^{|F|} F \wedge \star \bar{\Omega} \\
& =\nabla F-\bar{e} \wedge \star F+(-I)^{|F|} F \wedge \star \bar{e}
\end{aligned}
\end{aligned}
$$

Gauge symmetry:

$$
\delta \Omega=D_{\Omega} \xi(y, \varphi \mid x)
$$

Spin s field is obtained by

$$
\phi_{m(s)}=e_{m}^{\alpha(2 s)} \overline{\mathbf{e}}_{m \alpha \alpha} \cdots \overline{\mathbf{e}}_{m \alpha \alpha}
$$

$$
D_{\Omega} \Omega=0
$$

Solve torsion contraint

Fronsdal equation:
 $\square \phi_{m(s)}+\cdots=0$

$$
\omega=\omega(\mathrm{e})
$$

Scalar field

$$
\square_{\text {AdS }} \phi=m^{2} \phi
$$

Has to be rewritten in "unfolded" form:

$$
\nabla C-\overline{\mathrm{e}} \wedge \star C-C \wedge \star \overline{\mathrm{e}}=0
$$

$$
C(y)=\sum_{s} C_{\alpha(s)} y^{\alpha_{1}} \star \cdots \star y^{\alpha_{s}}
$$

$$
C(y=0)=\phi
$$

$$
C_{\alpha(s)} \sim\left(\bar{e}_{\alpha \alpha}^{m}\right)^{s} \phi
$$

$D_{\Omega} C \neq \nabla C-\overline{\mathrm{e}} \wedge \star C-C \wedge \star \overline{\mathrm{e}}=0$

 $B=C \psi \quad$ with $\quad \psi \varphi=-\varphi \psi \quad \psi^{2}=1$$$
\begin{aligned}
D_{\Omega} B=D_{\Omega}(C \psi) & =(\nabla C) \psi-\overline{\mathrm{e}} \wedge \star C \psi+C \psi \wedge \star \overline{\mathrm{e}} \\
& =(\nabla C-\overline{\mathrm{e}} \wedge \star C-C \wedge \star \overline{\mathrm{e}}) \psi=0
\end{aligned}
$$

$$
\overline{\mathrm{e}} \sim \varphi \mathrm{e}^{\alpha \beta} y_{\alpha} \star y_{\beta}
$$

"Twisted adjoint representation"

Summary of free equations:

$$
\begin{array}{ll}
D_{\Omega} \Omega=0 & \delta \Omega=D_{\Omega} \xi \\
D_{\Omega} B=0 & \delta B=0
\end{array}
$$

There is a natural generalisation:

$$
\begin{aligned}
B=C \psi & \longrightarrow B=C \psi+C^{t w} \\
\Omega & \longrightarrow \Omega=\omega+\omega^{t w} \psi
\end{aligned}
$$

In fact Vasiliev equations require these additional twisted fields

Twisted fields can be consistently be set to zero up to 2nd order perturbations around AdS.

[P.K, G. Lucena Gomez, E.Skvortsov, M. Taronna]

Step 2: Non-linear equations (= Vasiliev equations)

More formalism:

Additional variable z_{α} commutes with $y_{\alpha}, \varphi, \psi$

$$
(f \star g)(y, z)=f(y, z) e^{-i\left(\overleftarrow{\partial}_{y}+\overleftarrow{\partial}_{z}\right)_{\alpha}\left(\vec{\partial}_{y}-\vec{\partial}_{z}\right)^{\alpha}} g(y, z)
$$

e.g. $\quad z_{\alpha} \star f(y)=\left(z_{\alpha}+i \partial_{\alpha}^{y}\right) f(y)$

All fields depend on all variables:

$$
\begin{array}{lll}
\mathrm{B}(y, \psi, \varphi) \\
\Omega(y, \psi, \varphi)
\end{array} \quad \hat{\mathrm{B}}(\mathrm{z}, y, \psi, \varphi)
$$

Vasiliev equations:

$$
\begin{aligned}
& D_{\Omega} \hat{\Omega}=\hat{\Omega} \wedge \star \hat{\Omega} \\
& D_{\Omega} \hat{B}=[\hat{W}, \hat{\Omega}]_{\star}
\end{aligned}
$$

$$
\partial_{\alpha}^{z} \hat{\Omega}=\ldots
$$

$$
\partial_{\alpha}^{z} \hat{B}=\ldots
$$

$$
\hat{\Omega}=\Omega(y)+z_{\alpha} g^{\alpha}(\Omega, B)\left[\begin{array}{l}
D_{\Omega} \hat{\Omega}=\hat{\Omega} \wedge \star \hat{\Omega} \\
D_{\Omega} \hat{B}=[\hat{W}, \hat{\Omega}]_{\star} \\
\\
\\
\partial_{\alpha}^{z} \hat{\Omega}=\ldots \\
\partial_{\alpha}^{z} \hat{B}=\ldots
\end{array}\right.
$$

First equation is then evaluated at $\mathrm{z}=0$:

$$
D_{\Omega} \Omega=F(\Omega, B)
$$

Possible subtle points:

- metric-like \longrightarrow frame-like

$$
\phi_{m(s)}=\mathrm{e}_{m}^{\alpha(2 s)} \overline{\mathrm{e}}_{m \alpha \alpha} \ldots \overline{\mathrm{e}}_{m \alpha \alpha}
$$

- Schwinger-Fock gauge:

$$
\xi(z, y) \longrightarrow \xi(y)
$$

Conclusions

- We extracted interactions from Vasiliev equations up to 2nd order around AdS.
- We could clarify:
- Twisted fields decouple to this order
- cubic action by symmetry
- class of allowed field redefinitions
- New puzzle: Divergences in 3pt function

